790 research outputs found

    On kernel engineering via Paley–Wiener

    Get PDF
    A radial basis function approximation takes the form s(x)=∑k=1nakϕ(x−bk),x∈Rd,s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d, where the coefficients a 1,
,a n are real numbers, the centres b 1,
,b n are distinct points in ℝ d , and the function φ:ℝ d →ℝ is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure ÎŒ for which the convolution ψ=ÎŒ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering

    Residual strain in free-standing CdTe nanowires overgrown with HgTe

    Full text link
    We investigate the crystal properties of CdTe nanowires overgrown with HgTe. Scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) confirm, that the growth results in a high ensemble uniformity and that the individual heterostructures are single-crystalline, respectively. We use high-resolution X-ray diffraction (HRXRD) to investigate strain, caused by the small lattice mismatch between the two materials. We find that both CdTe and HgTe show changes in lattice constant compared to the respective bulk lattice constants. The measurements reveal a complex strain pattern with signatures of both uniaxial and shear strains present in the overgrown nanowires

    Spontaneous decay of an excited atom placed near a rectangular plate

    Get PDF
    Using the Born expansion of the Green tensor, we consider the spontaneous decay rate of an excited atom placed in the vicinity of a rectangular plate. We discuss the limitations of the commonly used simplifying assumption that the plate extends to infinity in the lateral directions and examine the effects of the atomic dipole moment orientation, atomic position, and plate boundary and thickness on the atomic decay rate. In particular, it is shown that in the boundary region, the spontaneous decay rate can be strongly modified.Comment: 5 pages, 5 figure

    Quantum Correlated Interstitials and the Hall Resistivity of the Magnetically Induced Wigner Crystal

    Full text link
    We study a trial wavefunction for an interstitial in a Wigner crystal. We find that the electron correlations, ignored in a conventional Hartree-Fock treatment, dramatically lower the interstitial energy, especially at fillings close to an incompressible liquid state. The correlation between the interstitial electron and the lattice electrons at Μ<1/m\nu <1/m is introduced by constructing a trial wave- function which bears a Jastrow factor of a Laughlin state at Μ=1/m\nu=1/m. For fillings close to but just below Μ=1/m\nu=1/m, we find that a perfect Wigner crystal becomes unstable against formation of such interstitials. It is argued that conduction due to correlated interstitials in the presence of weak disorder leads to the {\it classical} Hall resistivity, as seen experimentally.Comment: 10 pages, RevTe

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure

    Angle-Resolved Spectroscopy of Electron-Electron Scattering in a 2D System

    Full text link
    Electron-beam propagation experiments have been used to determine the energy and angle dependence of electron-electron (ee) scattering a two-dimensional electron gas (2DEG) in a very direct manner by a new spectroscopy method. The experimental results are in good agreement with recent theories and provide direct evidence for the differences between ee-scattering in a 2DEG as compared with 3D systems. Most conspicuous is the increased importance of small-angle scattering in a 2D system, resulting in a reduced (but energy-dependent) broadening of the electron beam.Comment: 4 pages, 4 figure

    Fine structure of "zero-mode" Landau levels in HgTe/HgCdTe quantum wells

    Full text link
    HgTe/HgCdTe quantum wells with the inverted band structure have been probed using far infrared magneto-spectroscopy. Realistic calculations of Landau level diagrams have been performed to identify the observed transitions. Investigations have been greatly focused on the magnetic field dependence of the peculiar pair of "zero-mode" Landau levels which characteristically split from the upper conduction and bottom valence bands, and merge under the applied magnetic field. The observed avoided crossing of these levels is tentatively attributed to the bulk inversion asymmetry of zinc blend compounds.Comment: 5 pages, 4 figure
    • 

    corecore