2,643 research outputs found

    Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus.

    Get PDF
    Usher 1 patients are born profoundly deaf and then develop retinal degeneration. Thus they are readily identified before the onset of retinal degeneration, making gene therapy a viable strategy to prevent their blindness. Here, we have investigated the use of adeno-associated viruses (AAVs) for the delivery of the Usher 1B gene, MYO7A, to retinal cells in cell culture and in Myo7a-null mice. MYO7A cDNA, under control of a smCBA promoter, was packaged in single AAV2 and AAV5 vectors and as two overlapping halves in dual AAV2 vectors. The 7.9-kb smCBA-MYO7A exceeds the capacity of an AAV vector; packaging of such oversized constructs into single AAV vectors may involve fragmentation of the gene. Nevertheless, the AAV2 and AAV5 single vector preparations successfully transduced photoreceptor and retinal pigment epithelium cells, resulting in functional, full-length MYO7A protein and correction of mutant phenotypes, suggesting successful homologous recombination of gene fragments. With discrete, conventional-sized dual AAV2 vectors, full-length MYO7A was detected, but the level of protein expression was variable, and only a minority of cells showed phenotype correction. Our results show that MYO7A therapy with AAV2 or AAV5 single vectors is efficacious; however, the dual AAV2 approach proved to be less effective

    Frequency Dependent Specific Heat from Thermal Effusion in Spherical Geometry

    Get PDF
    We present a novel method of measuring the frequency dependent specific heat at the glass transition applied to 5-polyphenyl-4-ether. The method employs thermal waves effusing radially out from the surface of a spherical thermistor that acts as both a heat generator and thermometer. It is a merit of the method compared to planar effusion methods that the influence of the mechanical boundary conditions are analytically known. This implies that it is the longitudinal rather than the isobaric specific heat that is measured. As another merit the thermal conductivity and specific heat can be found independently. The method has highest sensitivity at a frequency where the thermal diffusion length is comparable to the radius of the heat generator. This limits in practise the frequency range to 2-3 decades. An account of the 3omega-technique used including higher order terms in the temperature dependency of the thermistor and in the power generated is furthermore given.Comment: 17 pages, 15 figures, Substantially revised versio

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    Complete genome sequence of <em>Staphylococcus aureus</em> strain M1, a unique t024-ST8-IVa Danish methicillin-resistant <i>S.</i> <em>aureus</em> clone

    Get PDF
    We report the genome sequence, in five contigs, of a methicillin-resistant Staphylococcus aureus isolate designated M1. This clinical isolate was from the index patient of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak in Copenhagen, Denmark, that started in 2003. This strain is sequence type 8 (ST8), spa type t024, and staphylococcal cassette chromosome mec element (SCCmec) type IVa

    Natural Pig Plasma Immunoglobulins Have Anti-Bacterial Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs

    Get PDF
    There is an increasing demand for non-antibiotics solutions to control infectious disease in intensive pig production. Here, one such alternative, namely pig antibodies purified from slaughterhouse blood was investigated in order to elucidate its potential usability to control post-weaning diarrhoea (PWD), which is one of the top indications for antibiotics usage in the pig production. A very cost-efficient and rapid one-step expanded bed adsorption (EBA) chromatography procedure was used to purify pig immunoglobulin G from slaughterhouse pig plasma (more than 100 litres), resulting in >85% pure pig IgG (ppIgG). The ppIgG thus comprised natural pig immunoglobulins and was subsequently shown to contain activity towards four pig-relevant bacterial strains (three different types of Escherichia coli and one type of Salmonella enterica) but not towards a fish pathogen (Yersinia ruckeri), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding of the challenge strain, reduced the proportion of the bacterial family Enterobacteriaceae, increased the proportion of families Enterococcoceae and Streptococcaceae and generally increased ileal microbiota diversity. Conclusively, our data support the idea that natural IgG directly purified from pig plasma and given as a feed supplement can be used in modern swine production as an efficient and cost-effective means for reducing both occurrence of PWD and antibiotics usage and with a potential for the prevention and treatment of other intestinal infectious diseases even if the causative agent might not be known
    • …
    corecore