31 research outputs found

    γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein

    Assembly, organization, and function of the COPII coat

    Get PDF
    A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states

    Bartonella and Brucella - weapons and strategies for stealth attack

    No full text
    Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies

    Live imaging of bidirectional traffic from the ERGIC

    No full text
    The endoplasmic reticulum-Golgi intermediate compartment (ERGIC) defined by the cycling lectin ERGIC-53 consists of tubulovesicular clusters, but it is unknown if these membranes are transport vehicles or stationary entities. Here, we show by live imaging that GFP-ERGIC-53 mainly localizes to long-lived stationary and some short-lived highly mobile elements. Unlike the anterograde marker VSV-G-GFP, GFP-ERGIC-53 does not vectorially move to the Golgi upon exit from the ERGIC, as assessed by a novel quantitative vector field method. Dual-color imaging of GFP-ERGIC-53 and a secretory protein (signal-sequence-tagged dsRed) reveals that the stationary elements are sites of repeated sorting of retrograde and anterograde cargo, and are interconnected by highly mobile elements. These results suggest that the ERGIC is stationary and not simply a collection of mobile carriers that mediate protein traffic from endoplasmic reticulum to Golgi

    Biochemical characterization of olive oil samples obtained from fruit mixtures and from oil blends of four cultivars grown in Central Tunisia

    No full text
    Blends of olive oils obtained from four cultivars (Olea europaeaL. cv. Chemlali, Chetoui,Oueslati and Koroneiki) were produced by two different methods of blending: processing fruit mixtures ormixing monovarietal oils, using the same proportions of selected cultivars. The obtained blends werebiochemically characterized to evaluate quality, and the two methods were compared. The results indicatedthat the most successful formulations are mainly F8 (60% Chemlali20% Oueslati20% Koroneiki)characterized by the highest contents of phenols and an elevated oxidative stability, and F5 (50%Chemlali50% Koroneiki) containing the highest MUFA level and the highest oxidative stability. Theeffect of the blending process on pigments and volatiles cannot be easily regulated, unlike phenols, fatty acidcomposition and OS, all of which positively correlated to the fruit mass ratio in the blend. Results suggestthat processing fruit mixtures of different cultivars resulted in a better oil quality than that of oils obtained bythe common oil blending method. This blending procedure offers a possibility to modulate the contents ofantioxidants, fatty acids and volatile compounds in virgin olive oil, and therefore, its quality and sensorialcharacteristics.Quatrevariétés d’olivier prospectées au centre de la Tunisie (Olea europaeaL. cv. Chemlali, Chetoui, Oueslati etKoroneiki) ont fait l’objet d’un essai de mélanges variétaux par deux méthodes de coupage, en vert et enhuile, tout en utilisant la Chemlali comme variété principale. La méthode classique de coupage à huileconsiste à mélanger les huiles monovariétales de deux ou trois variétés à des proportions bien définies. Parcontre, La méthode de coupage en vert consiste à mélanger les fruits de ces mêmes variétés avant leurbroyage, et en extraire l’huile polyvariétale. Les mélanges obtenus ont été caractérisés biochimiquementpour évaluer la qualité. Les résultats ont indiqué qu’une meilleure qualité d’huile a été obtenue avec laméthode de coupage en vert. Les formulations les plus réussies sont principalement F8 (60 %Chemlali20 % Oueslati20 % Koroneiki) caractérisée par le contenu le plus élevé de phénols (875,32 mg/kg) et une stabilité oxydative élevée (OS = 11,88 h), et F5 (50 % Chemlali50 % Koroneiki)contenant le niveau le plus élevé de MUFA (70,69 %) et l’OS la plus élevée (13,83 h). L’effet du coupage surles pigments et les composés volatiles ne peut pas être facilement régulé, contrairement aux phénols, à lacomposition acidique et à l’OS, qui sont tous en corrélation positive avec le pourcentage des fruits de chaquevariété dans le mélange. Cette procédure offre la possibilité de moduler les teneurs en antioxydants, enacides gras et en composés volatils dans l’huile d’olive, et donc sa qualité et ses caractéristiques sensorielle

    The ArfGEF GBF-1 Is Required for ER Structure, Secretion and Endocytic Transport in C. elegans

    Get PDF
    Small GTPases of the Sar/Arf family are essential to generate transport containers that mediate communication between organelles of the secretory pathway. Guanine nucleotide exchange factor (GEFs) activate the small GTPases and help their anchorage in the membrane. Thus, GEFs in a way temporally and spatially control Sar1/Arf1 GTPase activation. We investigated the role of the ArfGEF GBF-1 in C. elegans oocytes and intestinal epithelial cells. GBF-1 localizes to the cis-Golgi and is part of the t-ER-Golgi elements. GBF-1 is required for secretion and Golgi integrity. In addition, gbf-1(RNAi) causes the ER reticular structure to become dispersed, without destroying ER exit sites (ERES) because the ERES protein SEC-16 was still localized in distinct punctae at t-ER-Golgi units. Moreover, GBF-1 plays a role in receptor-mediated endocytosis in oocytes, without affecting recycling pathways. We find that both the yolk receptor RME-2 and the recycling endosome-associated RAB-11 localize similarly in control and gbf-1(RNAi) oocytes. While RAB5-positive early endosomes appear to be less prominent and the RAB-5 levels are reduced by gbf-1(RNAi) in the intestine, RAB-7-positive late endosomes were more abundant and formed aggregates and tubular structures. Our data suggest a role for GBF-1 in ER structure and endosomal traffic

    The Golgi Apparatus Maintains Its Organization Independent of the Endoplasmic Reticulum

    No full text
    Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin–associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER

    The Cargo Receptors Surf4, Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC)-53, and p25 Are Required to Maintain the Architecture of ERGIC and Golgi

    Get PDF
    Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment

    Rab1b Interacts with GBF1 and Modulates both ARF1 Dynamics and COPI Association

    Get PDF
    Assembly of the cytosolic coat protein I (COPI) complex at the ER–Golgi interface is directed by the ADP ribosylation factor1 (Arf1) and its guanine nucleotide exchange factor (GBF1). Rab1b GTPase modulates COPI recruitment, but the molecular mechanism underlying this action remains unclear. Our data reveal that in vivo expression of the GTP-restricted Rab1b mutant (Rab1Q67L) increased the association of GBF1 and COPI to peripheral structures localized at the ER exit sites (ERES) interface. Active Rab1b also stabilized Arf1 on Golgi membranes. Furthermore, we characterized GBF1 as a new Rab1b effector, and showed that its N-terminal domain was involved in this interaction. Rab1b small interfering RNA oligonucleotide assays suggested that Rab1b was required for GBF1 membrane association. To further understand how Rab1b functions in ER-to-Golgi transport, we analyzed GFP-Rab1b dynamics in HeLa cells. Time-lapse microscopy indicated that the majority of the Rab1b-labeled punctuated structures are relatively short-lived with limited-range movements. FRAP of Golgi GFP-Rab1bwt showed rapid recovery (t1/2 120 s) with minimal dependence on microtubules. Our data support a model where Rab1b-GTP induces GBF1 recruitment at the ERES interface and at the Golgi complex where it is required for COPII/COPI exchange or COPI vesicle formation, respectively
    corecore