463 research outputs found

    Assessing New Product Sustainability Index (NPSI) by Integrating Sustainability Aspects into the Early New Product Design Stages

    Get PDF
    Product design is one of the most important stages in the new product development process influencing global sustainability. However, the early design strategy offers the highest impact on sustainability, the need for using sustainable proactive approach in early design decisions could be the effective tool to achieve sustainability of new products. This paper presents a necessity of considering the sustainability aspects in pre-specification stages of new product design process, and introduces a modified methodology for establishing a single Index termed as New Product Sustainability Index (NPSI) which enables the designers to carry out a quick analysis of the alternatives of new product designs and make choices based on various criteria. The index aggregates (TBL) and R & D aspects of different types of quantitative and qualitative indicators and information objects from a product manufacturing point of view, into one single index. The sustainability matrix, aspects and criteria used in evaluating of (NPSI), is constructed in table form

    Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer

    Get PDF
    BACKGROUND: FOXM1 regulates expression of cell cycle related genes that are essential for progression into DNA replication and mitosis. Consistent with its role in proliferation, elevated expression of FOXM1 has been reported in a variety of human tumour entities. FOXM1 is a gene of interest because recently chemical inhibitors of FOXM1 were described to limit proliferation and induce apoptosis in cancer cells in vitro, indicating that FOXM1 inhibitors could represent useful anticancer therapeutics. METHODS: Using immunohistochemistry (IHC) we systematically analysed FOXM1 expression in human invasive breast carcinomas (n = 204) and normal breast tissues (n = 46) on a tissue microarray. Additionally, using semiquantitative realtime PCR, a collection of paraffin embedded normal (n = 12) and cancerous (n = 25) breast tissue specimens as well as benign (n = 3) and malignant mammary cell lines (n = 8) were investigated for FOXM1 expression. SPSS version 14.0 was used for statistical analysis. RESULTS: FOXM1 was found to be overexpressed in breast cancer in comparison to normal breast tissue both on the RNA and protein level (e.g. 8.7 fold as measured by realtime PCR). We found a significant correlation between FOXM1 expression and the HER2 status determined by HER2 immunohistochemistry (P < 0.05). Univariate survival analysis showed a tendency between FOXM1 protein expression and unfavourable prognosis (P = 0.110). CONCLUSION: FOXM1 may represent a novel breast tumour marker with prognostic significance that could be included into multi-marker panels for breast cancer. Interestingly, we found a positive correlation between FOXM1 expression and HER2 status, pointing to a potential role of FOXM1 as a new drug target in HER2 resistant breast tumour, as FOXM1 inhibitors for cancer treatment were described recently. Further studies are underway to analyse the potential interaction between FOXM1 and HER2, especially whether FOXM1 directly activates the HER2 promoter

    Dual Function of the NK Cell Receptor 2B4 (CD244) in the Regulation of HCV-Specific CD8+ T Cells

    Get PDF
    The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control

    Evaluating psychometric properties of the Emotional Eating Scale Adapted for Children and Adolescents (EES-C) in a clinical sample of children seeking treatment for obesity: a case for the unidimensional model.

    Get PDF
    BackgroundThe Emotional Eating Scale - Adapted for Children and Adolescents (EES-C) assesses children's urge to eat in response to experiences of negative affect. Prior psychometric studies have demonstrated the high reliability, concurrent validity, and test-retest reliability of theoretically defined subconstructs among non-clinical samples of children and adolescents who were primarily healthy weight; however, no psychometric studies exist investigating the EES-C among clinical samples of children with overweight/obesity (OW/OB). Furthermore, studies conducted in different contexts have suggested a discordant number of subconstructs of emotions related to eating. The purpose of this study was to evaluate the validity of the EES-C in a clinical sample of children seeking weight-loss treatment.MethodUsing a hierarchical bi-factor approach, we evaluated the validity of the EES-C to measure a single general construct, a set of two separate correlated subconstructs, or a hierarchical arrangement of two constructs, and determined reliability in a clinical sample of treatment-seeking children with OW/OB aged 8-12 years (N = 147, mean age = 10.4 years.; mean BMI z = 2.0; female = 66%; Hispanic = 32%, White and other = 68%).ResultsComparison of factor-extraction methods suggested a single primary construct underlying EES-C in this clinical sample. The bi-factor indices provided clear evidence that most of the reliable variance in the total score (90.8 for bi-factor model with three grouping factors and 95.2 for bi-factor model with five grouping factors) was attributed to the general construct. After adjusting for relationships with the primary construct, remaining correlations among sets of items did not suggest additional reliable constructs.ConclusionResults suggest that the primary interpretive emphasis of the EES-C among treatment-seeking children with overweight or obesity should be placed on a single general construct, not on the 3- or 5- subconstructs as was previously suggested

    Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by <it>AMBP </it>– and five homologous heavy chains (encoded by <it>ITIH1</it>, <it>ITIH2</it>, <it>ITIH3</it>, <it>ITIH4</it>, and <it>ITIH5</it>), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis.</p> <p>Methods</p> <p>We systematically investigated differential gene expression of the <it>ITIH </it>gene family, as well as <it>AMBP </it>and the interacting partner <it>TNFAIP6 </it>in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>We found that <it>ITIH </it>genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, <it>ITIH </it>genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose <it>ITIH2 </it>expression in human breast cancer. Loss of <it>ITIH2 </it>expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule.</p> <p>Conclusion</p> <p>Altogether, this is the first systematic analysis on the differential expression of <it>ITIH </it>genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.</p

    Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Head trauma is one of the most important clinical issues that not only can be fatal and disabling, requiring long-term treatment and care, but also can cause heavy financial burden. Formation or distribution of free oxygen radicals should be decreased to enable fixing of poor neurological outcomes and to prevent neuronal damage secondary to ischemia after trauma. Coenzyme Q<sub>10 </sub>(CoQ<sub>10</sub>), a component of the mitochondrial electron transport chain, is a strong antioxidant that plays a role in membrane stabilization. In this study, the role of CoQ<sub>10 </sub>in the treatment of head trauma is researched by analyzing the histopathological and biochemical effects of CoQ<sub>10 </sub>administered after experimental traumatic brain injury in rats. A traumatic brain-injury model was created in all rats. Trauma was inflicted on rats by the free fall of an object of 450 g weight from a height of 70 cm on the frontoparietal midline onto a metal disc fixed between the coronal and the lambdoid sutures after a midline incision was carried out.</p> <p>Results</p> <p>In the biochemical tests, tissue malondialdehyde (MDA) levels were significantly higher in the traumatic brain-injury group compared to the sham group (<it>p </it>< 0.05). Administration of CoQ<sub>10 </sub>after trauma was shown to be protective because it significantly lowered the increased MDA levels (<it>p </it>< 0.05). Comparing the superoxide dismutase (SOD) levels of the four groups, trauma + CoQ<sub>10 </sub>group had SOD levels ranging between those of sham group and traumatic brain-injury group, and no statistically significant increase was detected. Histopathological results showed a statistically significant difference between the CoQ<sub>10 </sub>and the other trauma-subjected groups with reference to vascular congestion, neuronal loss, nuclear pyknosis, nuclear hyperchromasia, cytoplasmic eosinophilia, and axonal edema (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>Neuronal degenerative findings and the secondary brain damage and ischemia caused by oxidative stress are decreased by CoQ<sub>10 </sub>use in rats with traumatic brain injury.</p

    Human Glycolipid Transfer Protein (GLTP) Expression Modulates Cell Shape

    Get PDF
    Glycolipid transfer protein (GLTP) accelerates glycosphingolipid (GSL) intermembrane transfer via a unique lipid transfer/binding fold (GLTP-fold) that defines the GLTP superfamily and is the prototype for GLTP-like domains in larger proteins, i.e. phosphoinositol 4-phosphate adaptor protein-2 (FAPP2). Although GLTP-folds are known to play roles in the nonvesicular intracellular trafficking of glycolipids, their ability to alter cell phenotype remains unexplored. In the present study, overexpression of human glycolipid transfer protein (GLTP) was found to dramatically alter cell phenotype, with cells becoming round between 24 and 48 h after transfection. By 48 h post transfection, ∼70% conversion to the markedly round shape was evident in HeLa and HEK-293 cells, but not in A549 cells. In contrast, overexpression of W96A-GLTP, a liganding-site point mutant with abrogated ability to transfer glycolipid, did not alter cell shape. The round adherent cells exhibited diminished motility in wound healing assays and an inability to endocytose cholera toxin but remained viable and showed little increase in apoptosis as assessed by poly(ADP-ribose) polymerase cleavage. A round cell phenotype also was induced by overexpression of FAPP2, which binds/transfers glycolipid via its C-terminal GLTP-like fold, but not by a plant GLTP ortholog (ACD11), which is incapable of glycolipid binding/transfer. Screening for human protein partners of GLTP by yeast two hybrid screening and by immuno-pulldown analyses revealed regulation of the GLTP-induced cell rounding response by interaction with δ-catenin. Remarkably, while δ-catenin overexpression alone induced dendritic outgrowths, coexpression of GLTP along with δ-catenin accelerated transition to the rounded phenotype. The findings represent the first known phenotypic changes triggered by GLTP overexpression and regulated by direct interaction with a p120-catenin protein family member
    corecore