7,333 research outputs found
Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity
The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems.
Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T,
DVB-H and DAB systems that use Orthogonal Frequency Division Multplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies
such as WiMAX and future 4G networks for delivery
of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such
a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by
simulation for different DVB-H and diversity parameters
Future transmitter/receiver diversity schemes in broadcast wireless networks
An open diversity architecture for a cooperating broadcast wireless network is presented that exploits the strengths of the existing digital broadcast standards. Different diversity techniques for broadcast networks that will minimize the complexity of broadcast systems and improve received SNR of broadcast signals are described. Resulting digital broadcast networks could require fewer transmitter sites and thus be more cost-effective with less environmental impact. Transmit diversity is particularly investigated since it obviates the major disadvantage of receive diversity being the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here are compatible with existing broadcast and cellular telecom standards and can be incorporated into existing systems without change
Periodic pattern formation in reaction-diffusion systems -an introduction for numerical simulation
The aim of the present review is to provide a comprehensive explanation of Turing reaction–diffusion systems in sufficient detail to allow readers to perform numerical calculations themselves. The reaction–diffusion model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-organization and is beginning to be applied to actual experimental systems in developmental biology. Despite the increase in current interest, the model is not well understood among experimental biologists, partly because appropriate introductory texts are lacking. In the present review, we provide a detailed description of the definition of the Turing reaction–diffusion model that is comprehensible without a special mathematical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We then show some examples of the patterns generated by the model. Finally, we discuss future prospects for the interdisciplinary field of research involving mathematical approaches in developmental biology
YF-17/ADEN system study
The YF-17 aircraft was evaluated as a candidate nonaxisymmetric nozzle flight demonstrator. Configuration design modifications, control system design, flight performance assessment, and program plan and cost we are summarized. Two aircraft configurations were studied. The first was modified as required to install only the augmented deflector exhaust nozzle (ADEN). The second one added a canard installation to take advantage of the full (up to 20 deg) nozzle vectoring capability. Results indicate that: (1) the program is feasible and can be accomplished at reasonable cost and low risk; (2) installation of ADEN increases the aircraft weight by 600 kg (1325 lb); (3) the control system can be modified to accomplish direct lift, pointing capability, variable static margin and deceleration modes of operation; (4) unvectored thrust-minus-drag is similar to the baseline YF-17; and (5) vectoring does not improve maneuvering performance. However, some potential benefits in direct lift, aircraft pointing, handling at low dynamic pressure and takeoff/landing ground roll are available. A 27 month program with 12 months of flight test is envisioned, with the cost estimated to be 13.2 million for the version without canard. The feasiblity of adding a thrust reverser to the YF-17/ADEN was investigated
Emotional engagements predict and enhance social cognition in young chimpanzees
Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity
Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study
The superior temporal sulcus (STS) of the macaque monkey contains multiple visual areas. Many neurons within these regions respond selectively to motion direction and to more complex motion patterns, such as expansion, contraction and rotation. Single-unit recording and optical recording studies in MT/MST suggest that cells with similar tuning properties are clustered into columns extending through multiple cortical layers. In this study, we used a double-label 2-deoxyglucose technique in awake, behaving macaque monkeys to clarify this functional organization. This technique allowed us to label, in a single animal, two populations of neurons responding to two different visual stimuli. In one monkey we compared expansion with contraction; in a second monkey we compared expansion with clockwise rotation. Within the STS we found a patchy arrangement of cortical columns with alternating stimulus selectivity: columns of neurons preferring expansion versus contraction were more widely separated than those selective for expansion versus rotation. This mosaic of interdigitating columns on the floor and posterior bank of the STS included area MT and some neighboring regions of cortex, perhaps including area MST
A new approach to the solar oxygen abundance problem
In this work we present new data that sets strong constraints on the solar
oxygen abundance. Our approach, based on the analysis of spectro-polarimetric
observations, is almost model-independent and therefore extremely robust. The
asymmetry of the Stokes V profile of the 6300 A [OI] and NiI blend is used as
an indicator of the relative abundances of these two elements. The peculiar
shape of the profile requires a value of EO = 730+/-100 ppm (parts per
million), or logEO = 8.86+/-0.07 in the logarithmic scale commonly used in
Astrophysics. The uncertainty range includes the model dependence as well as
uncertainties in the oscillator strengths of the lines. We emphasize that the
very low degree of model dependence in our analysis makes it very reliable
compared to traditional determinations.Comment: Accepted for publication in The Astrophysical Journal Letters. 12
pages, 3 figures, referee format. This is the replacement of a previous
version of the paper. Our revised analysis takes into consideration the
formation of molecules, resulting in a substantially larger value for the
derived Oxygen abundanc
Test-bed development & measurement plan for evaluating transmit diversity in DVB networks
This paper presents a test-bed development and measurement plan for evaluating transmit diversity in the DVB network. Transmit diversity reduces the complexity and improves the power consumption of the personal receiving devices by improving the transmission of signals in NLOS cluttered environments. Also, it is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. Test service scenarios were developed to illustrate the benefits of such technologies so that effectiveness can be researched in a variety of service and terrain scenarios using purpose built test systems. The laboratory tests were designed to validate the theoretical measurements from the theoretical analysis and these results will be verified by a field measurement campaign in short and long time spans
Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices
Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM
Monte Carlo simulation of melting transition on DNA nanocompartment
DNA nanocompartment is a typical DNA-based machine whose function is
dependent of molecular collective effect. Fundamental properties of the device
have been addressed via electrochemical analysis, fluorescent microscopy, and
atomic force microscopy. Interesting and novel phenomena emerged during the
switching of the device. We have found that DNAs in this system exhibit a much
steep melting transition compared to ones in bulk solution or conventional DNA
array. To achieve an understanding to this discrepancy, we introduced DNA-DNA
interaction potential to the conventional Ising-like Zimm-Bragg theory and
Peyrard-Bishop model of DNA melting. To avoid unrealistic numerical calculation
caused by modification of the Peyrard-Bishop nonlinear Hamiltonian with the
DNA-DNA interaction, we established coarse-gained Monte Carlo recursion
relations by elucidation of five components of energy change during melting
transition. The result suggests that DNA-DNA interaction potential accounts for
the observed steep transition.Comment: 12 pages, 5 figure
- …