1,044 research outputs found

    Isobutanol production from cellobionic acid in Escherichia coli.

    Get PDF
    BackgroundLiquid fuels needed for the global transportation industry can be produced from sugars derived from plant-based lignocellulosics. Lignocellulosics contain a range of sugars, only some of which (such as cellulose) have been shown to be utilizable by microorganisms capable of producing biofuels. Cellobionic acid makes up a small but significant portion of lignocellulosic degradation products, and had not previously been investigated as an utilizable substrate. However, aldonic acids such as cellobionic acid are the primary products of a promising new group of lignocellulosic-degrading enzymes, which makes this compound group worthy of study. Cellobionic acid doesn't inhibit cellulose degradation enzymes and so its inclusion would increase lignocellulosic degradation efficiency. Also, its use would increase overall product yield from lignocellulose substrate. For these reasons, cellobionic acid has gained increased attention for cellulosic biofuel production.ResultsThis study describes the discovery that Escherichia coli are naturally able to utilize cellobionic acid as a sole carbon source with efficiency comparable to that of glucose and the construction of an E. coli strain able to produce the drop-in biofuel candidate isobutanol from cellobionic acid. The gene primarily responsible for growth of E. coli on cellobionic acid is ascB, a gene previously thought to be cryptic (expressed only after incurring specific mutations in nearby regulatory genes). In addition to AscB, the ascB knockout strain can be complemented by the cellobionic acid phosphorylase from the fungus Neurospora crassa. An E. coli strain engineered to express the isobutanol production pathway was successfully able to convert cellobionic acid into isobutanol. Furthermore, to demonstrate potential application of this strain in a sequential two-step bioprocessing system, E. coli was grown on hydrolysate (that was degraded by a fungus) and was successfully able to produce isobutanol.ConclusionsThese results demonstrate that cellobionic acid is a viable carbon source for biofuel production. This work suggests that with further optimization, a bacteria-fungus co-culture could be used in decreased-cost biomass-based biofuel production systems

    Phase ordering in coupled noisy bistable systems on scale-free networks

    No full text
    We study a system consisting of diffusively coupled noisy bistable elements on a scale-free random network. This system exhibits an order-disorder phase transition as the noise intensity is varied. The phase ordering process takes place consecutively and in order of the degrees, reflecting strong degree heterogeneity of the scale-free network. A nonlinear Fokker-Planck equation describing the network dynamics is derived under mean-field approximation of the network, and is used to explain the phase ordering dynamics of the system

    Divining integrative medicine

    Get PDF

    Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    Get PDF
    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

    High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal

    Get PDF
    Promising approaches to produce higher alcohols, e.g., isobutanol, using Escherichia coli have been developed with successful results. Here, we translated the isobutanol process from shake flasks to a 1-L bioreactor in order to characterize three E. coli strains. With in situ isobutanol removal from the bioreactor using gas stripping, the engineered E. coli strain (JCL260) produced more than 50 g/L in 72 h. In addition, the isobutanol production by the parental strain (JCL16) and the high isobutanol-tolerant mutant (SA481) were compared with JCL260. Interestingly, we found that the isobutanol-tolerant strain in fact produced worse than either JCL16 or JCL260. This result suggests that in situ product removal can properly overcome isobutanol toxicity in E. coli cultures. The isobutanol productivity was approximately twofold and the titer was 9% higher than n-butanol produced by Clostridium in a similar integrated system

    Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB2_2

    Full text link
    We examine the superconducting anisotropy γc=(mc/mab)1/2\gamma_c = (m_c / m_{ab})^{1/2} of a metallic high-TcT_c superconductor MgB2_2 by measuring the magnetic torque of a single crystal. The anisotropy γc\gamma_c does not depend sensitively on the applied magnetic field at 10 K. We obtain the anisotropy parameter γc=4.31±0.14\gamma_c = 4.31 \pm 0.14. The torque curve shows the sharp hysteresis peak when the field is applied parallel to the boron layers. This comes from the intrinsic pinning and is experimental evidence for the occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review

    Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes

    Get PDF
    Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we have compared the effect of various alcohol dehydrogenases (ADH) for the last step of the isobutanol production. E. coli has the yqhD gene which encodes a broad-range ADH. Isobutanol production significantly decreased with the deletion of yqhD, suggesting that the yqhD gene on the genome contributed to isobutanol production. The adh genes of two bacteria and one yeast were also compared in E. coli harboring the isobutanol synthesis pathway. Overexpression of yqhD or adhA in E. coli showed better production than ADH2, a result confirmed by activity measurements with isobutyraldehyde

    Chapter 6: Priority Infrastructure Opportunities for CO2 Utilization, in: Carbon Dioxide Utilization Markets and Infrastructure Status and Opportunities: A First Report

    Get PDF
    Building on the analyses of carbon dioxide (CO2)-derived products, infrastructure requirements, and policy, regulatory, and societal considerations discussed in Chapters 2 through 5, this chapter presents a summary of priority infrastructure opportunities to enable CO2 utilization. The chapter begins by describing options for CO2 utilization infrastructure funding based on current policy and regulatory regimes, and considering successful examples in related industries. It then examines near-term opportunities for CO2 utilization infrastructure investments, as well as near-term actions to enable longerterm deployment options. A primary consideration for these opportunities is the ability of CO2 utilization to participate in a future circular carbon economy, which depends on the type of CO2 source, CO2-derived product lifetime, and life cycle emissions of other process inputs. The chapt

    Chapter 4: Infrastructure Considerations for CO2 Utilization, in: Carbon Dioxide Utilization Markets and Infrastructure Status and Opportunities: A First Report

    Get PDF
    This chapter describes considerations for developing infrastructure for carbon dioxide (CO2) utilization, taking into account the CO2-derived products identified in Chapter 3 and the existing infrastructure discussed in Chapter 2. Infrastructure needs throughout the CO2 utilization value chain are examined, from capture to purification, transportation, conversion, and, where applicable, transportation of the CO2-derived product. Requirements for enabling infrastructure, namely, clean electricity, hydrogen, water, land, and energy storage, are also considered

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads
    • …
    corecore