498 research outputs found
A possible four-phase coexistence in a single-component system
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids
Entangling two distant nanocavities via a waveguide
In this paper, we investigate the generation of continuous variable
entanglement between two spatially-separate nanocavities mediated by a coupled
resonator optical waveguide in photonic crystals. By solving the exact dynamics
of the cavity system coupled to the waveguide, the entanglement and purity of
the two-mode cavity state are discussed in detail for the initially separated
squeezing inputs. It is found that the stable and pure entangled state of the
two distant nanocavities can be achieved with the requirement of only a weak
cavity-waveguide coupling when the cavities are resonant with the band center
of the waveguide. The strong couplings between the cavities and the waveguide
lead to the entanglement sudden death and sudden birth. When the frequencies of
the cavities lie outside the band of the waveguide, the waveguide-induced cross
frequency shift between the cavities can optimize the achievable entanglement.
It is also shown that the entanglement can be easily manipulated through the
changes of the cavity frequencies within the waveguide band.Comment: 8 pages, 8 figure
Photodegradation of 1,3,5-trichlorobenzene in aqueous surfactant solutions
The original publication is available at www.springerlink.comArticleBULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY. 74(2): 365-372 (2005)journal articl
Cavity Quantum Electrodynamics with Anderson-localized Modes
A major challenge in quantum optics and quantum information technology is to
enhance the interaction between single photons and single quantum emitters.
Highly engineered optical cavities are generally implemented requiring
nanoscale fabrication precision. We demonstrate a fundamentally different
approach in which disorder is used as a resource rather than a nuisance. We
generate strongly confined Anderson-localized cavity modes by deliberately
adding disorder to photonic crystal waveguides. The emission rate of a
semiconductor quantum dot embedded in the waveguide is enhanced by a factor of
15 on resonance with the Anderson-localized mode and 94 % of the emitted
single-photons couple to the mode. Disordered photonic media thus provide an
efficient platform for quantum electrodynamics offering an approach to
inherently disorder-robust quantum information devices
Optimization of quasi-normal eigenvalues for Krein-Nudelman strings
The paper is devoted to optimization of resonances for Krein strings with
total mass and statical moment constraints. The problem is to design for a
given a string that has a resonance on the line \alpha + \i
\R with a minimal possible modulus of the imaginary part. We find optimal
resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form
from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a
journal's refere
Modelling of photonic wire Bragg Gratings
Some important properties of photonic wire Bragg grating structures have been investigate. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated - and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied - because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models
Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications
Optical techniques are finding widespread use in analytical chemistry for
chemical and bio-chemical analysis. During the past decade, there has been an
increasing emphasis on miniaturization of chemical analysis systems and
naturally this has stimulated a large effort in integrating microfluidics and
optics in lab-on-a-chip microsystems. This development is partly defining the
emerging field of optofluidics. Scaling analysis and experiments have
demonstrated the advantage of micro-scale devices over their macroscopic
counterparts for a number of chemical applications. However, from an optical
point of view, miniaturized devices suffer dramatically from the reduced
optical path compared to macroscale experiments, e.g. in a cuvette. Obviously,
the reduced optical path complicates the application of optical techniques in
lab-on-a-chip systems. In this paper we theoretically discuss how a strongly
dispersive photonic crystal environment may be used to enhance the light-matter
interactions, thus potentially compensating for the reduced optical path in
lab-on-a-chip systems. Combining electromagnetic perturbation theory with
full-wave electromagnetic simulations we address the prospects for achieving
slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap
based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear
in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages
including 8 figure
Resonant Tunneling in Photonic Double Quantum Well Heterostructures
Here, we study the resonant photonic states of photonic double quantum well (PDQW) heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices
Acoustic and perceptual evaluation of Mandarin tone productions before and after perceptual training
This is the publisher's version, also available electronically from http://scitation.aip.org/content/asa/journal/jasa/113/2/10.1121/1.1531176.Training American listeners to perceive Mandarin tones has been shown to be effective, with trainees’ identification improving by 21%. Improvement also generalized to new stimuli and new talkers, and was retained when tested six months after training [Y. Wang et al., J. Acoust. Soc. Am. 106, 3649–3658 (1999)]. The present study investigates whether the tonecontrasts gained perceptually transferred to production. Before their perception pretest and after their post-test, the trainees were recorded producing a list of Mandarin words. Their productions were first judged by native Mandarin listeners in an identification task. Identification of trainees’ post-test tone productions improved by 18% relative to their pretest productions, indicating significant tone production improvement after perceptual training. Acoustic analyses of the pre- and post-training productions further reveal the nature of the improvement, showing that post-training tone contours approximate native norms to a greater degree than pretraining tone contours. Furthermore, pitch height and pitch contour are not mastered in parallel, with the former being more resistant to improvement than the latter. These results are discussed in terms of the relationship between non-native tone perception and production as well as learning at the suprasegmental level
Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets
Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.We would like to acknowledge Mariana T Cerqueira for the illustration in Figure 1. This study was supported by Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology 'Cell Sheet Tissue Engineering Center (CSTEC)' and the Global CUE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support to RP Pirraco by the Portuguese Foundation for Science and Technology (FCT) through the PhD Grant SFRH/BD/44893/2008 is also acknowledged
- …