29 research outputs found

    Serials Spoken Here–Reports of Conferences, Institutes and Seminars

    Get PDF
    This quarter's column offers a report from the Acquisitions Institute at Timberline Lodge, held May 14–17, 2016, in Timberline Lodge, Oregon, and also provides coverage of multiple sessions from the Kraemer Copyright Conference, held June 6–7, 2016, in Colorado Springs, Colorado. Some reports are collected, as well, from the NASIG Annual Conference, held June 9–12, 2016, in Albuquerque, New Mexico, and the American Library Association (ALA) Annual Conference, held June 23–28, 2016, in Orlando, Florida. Lastly, there is a report from the International Federation of Library Associations and Institutions (IFLA) World Library and Information Congress, held August 13–19, 2016, in Columbus, Ohio. Topics covered include open access, linked data, copyright, text mining, e-resource management, and digitization

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    Full text link
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms.Comment: 14 pages, 12 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki Takami, Editors, Proc. SPIE 9147 (2014)

    Prime Focus Spectrograph (PFS) for the Subaru telescope: Ongoing integration and future plans

    Get PDF
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ∼ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward

    Die Assoziation von Samenleukozyten, Interleukin-6 und Interleukin-8 mit Fragmentierung der Spermien-DNA

    No full text

    Standardsamenparameter vs. Spermienkinematik zur Vorhersage von Spermien-DNA-Schäden

    No full text

    Rover Localization Results for the FIDO Rover

    No full text
    This paper describes the development of a two-tier state estimation approach for NASA/JPL's FIDO Rover that utilizes wheel odometry, inertial measurement sensors, and a sun sensor to generate accurate estimates of the rover's position and attitude throughout a rover traverse. The state estimation approach makes use of a linear Kalman filter to estimate the rate sensor bias terms associated with the inertial measurement sensors and then uses these estimated rate sensor bias terms to compute the attitude of the rover during a traverse. The estimated attitude terms are then combined with the wheel odometry to determine the rover's position and attitude through an extended Kalman filter approach. Finally, the absolute heading of the vehicle is determined via a sun sensor which is then utilized to initialize the rover's heading prior to the next planning cycle for the rover's operations. This paper describes the formulation, implementation, and results associated with the two-tier state estimation approach for the FIDO rover. Keywords: rover localization, rover state estimation, Kalman filter, inertial measurement units 1
    corecore