3,159 research outputs found

    Superconducting Microwave Cavity Made of Bulk MgB2

    Full text link
    We report the successful manufacture and characterization of a microwave resonant cylindrical cavity made of bulk MgB2 superconductor (Tc = 38.5 K), which has been produced by the Reactive Liquid Mg Infiltration technique. The quality factor of the cavity for the TE011 mode, resonating at 9.79 GHz, has been measured as a function of the temperature. At T = 4.2 K, the unloaded quality factor is 2.2x10^5; it remains of the order of 10^5 up to T ~ 30 K. We discuss the potential performance improvements of microwave cavities built from bulk MgB2 materials produced by reactive liquid Mg infiltration.Comment: 7 pages, 2 embedded figures, accepted for publication in Supercond. Sci. Techno

    Surface modification of polymeric materials by cold atmosphericplasma jet

    Get PDF
    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 degrees in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure. (C) 2014 Elsevier B.V. All rights reserved

    B meson leptonic decay constant with quenched lattice NRQCD

    Get PDF
    We present a lattice NRQCD study of the B meson decay constant in the quenched approximation with emphasis given to the scaling behavior. The NRQCD action and the heavy-light axial current we use include all terms of order 1/M and the perturbative O(αsa)O(\alpha_s a) and O(αs/M)O(\alpha_s/M) corrections. Using simulations at three value of couplings β\beta=5.7, 5.9 and 6.1 on lattices of size 123×32,163×4812^3\times 32, 16^3\times 48 and 243×6424^3\times 64, we find no significant aa dependence in fBf_B if the O(αsa)O(\alpha_s a) correction is included in the axial current. We obtain fB=167(7)(15)f_B = 167(7)(15) MeV, fBs=191(4)(17)(0+4)f_{B_s}= 191(4)(17)(^{+4}_{-0}) MeV and fBs/fB=1.15(3)(1)(0+3)f_{B_s}/f_B =1.15(3)(1)(^{+3}_{-0}), with the first error being statistical, the second systematic, and the third due to uncertainty of strange quark mass, while quenching errors being not included.Comment: 31 pages, 24 eps figure

    Outcome Independence of Entanglement in One-Way Computation

    Full text link
    We show that the various intermediate states appearing in the process of one-way computation at a given step of measurement are all equivalent modulo local unitary transformations. This implies, in particular, that all those intermediate states share the same entanglement irrespective of the measurement outcomes, indicating that the process of one-way computation is essentially unique with respect to local quantum operations.Comment: 6 pages, 4 figure

    Chiral Extrapolation of Lattice Data for Heavy Baryons

    Get PDF
    The masses of heavy baryons containing a b quark have been calculated numerically in lattice QCD with pion masses which are much larger than its physical value. In the present work we extrapolate these lattice data to the physical mass of the pion by applying the effective chiral Lagrangian for heavy baryons, which is invariant under chiral symmetry when the light quark masses go to zero and heavy quark symmetry when the heavy quark masses go to infinity. A phenomenological functional form with three parameters, which has the correct behavior in the chiral limit and appropriate behavior when the pion mass is large, is proposed to extrapolate the lattice data. It is found that the extrapolation deviates noticably from the naive linear extrapolation when the pion mass is smaller than about 500MeV. The mass differences between Sigma_b and Sigma_b^* and between Sigma_b^{(*)} and Lambda_b are also presented. Uncertainties arising from both lattice data and our model parameters are discussed in detail. We also give a comparision of the results in our model with those obtained in the naive linear extrapolations.Comment: 29 pages, 9 figure

    Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Get PDF
    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm
    corecore