5,377 research outputs found

    Development of a scanning electron mirror microscope

    Get PDF
    Scanning electron mirrors microscope design and developmen

    A review of the bandwidth and environmental discourses of future energy scenarios:Shades of green and gray

    Get PDF
    Energy scenarios are often used to investigate various possible energy futures and reduce the uncertainty that surrounds energy transition. However, scenario construction lacks consistent and adequate methodological standards, resulting in limited insight into the actual bandwidth covered by current energy scenarios and whether various perspectives on future energy development pathways are all adequately represented. Our research deployed a non-mathematical clustering approach to identify general trends in future energy scenarios and assess the role of Cornucopian and Malthusian oriented world views therein. We found that the futures communicated in quantified future energy scenarios overlap to a large extent and represent only a narrow bandwidth of moderate world views. We argue that the underrepresentation of extreme representations of world views and environmental discourses in energy scenarios skews the overall outlook on possible energy futures. This implies that scenario-informed policy design and decision-making risks bias towards the status-quo. (C) 2016 Elsevier Ltd. All rights reserved

    The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

    Get PDF
    The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes

    High-energy overtone spectroscopy of some deuterated methanes

    Get PDF
    High-energy overtone photoacoustic spectroscopy of gas phase CHD3 (ΔνCH=5,6, and 7), CH2D2, CH3D, and CH4 (ΔνCH=6) is reported. The overtone and combination bands of CHD3 display partially resolved rotational structure with laser limited linewidths (~0.5 cm^−1). A combination sum analysis is used to generate excited state rotational constants B'. We present an analysis of the Fermi resonances of CHD3 which indicates strong interactions of the CH stretch with degenerate bending modes. The relative intensities of the Fermi interacting states are in agreement with those calculated from an analysis based on frequency shifts and a two or three level model. However, the rotational B' constants are not explained by such simple models indicating further interactions with states as yet unobserved. An upper limit of 10 cm^−1 is estimated for the splitting of the |6,0>± local mode states for CH2D2, giving support to a description based on the local mode picture. For CH3D and CH4 the spectra are apparently congested by overlapping overtone and combination bands and perhaps other mechanisms not identified in this work. Generally, our results emphasize the importance of the interactions of CH stretching with CH bending motions

    Investigation on the trophic state of the North Sea for three years (1994?1996) simulated with the ecosystem model ERSEM ? the role of a sharp NAOI decline

    No full text
    International audienceApplying the ecosystem model ERSEM to the Northwest-European shelf (48°?63°N, 15°W?12°E) the years 1994-1996 were simulated, which exhibit an extremely strong transition in North Atlantic Oscillation index (NAOI): from a high-NAOI to a low-NAOI regime. In order to be far enough from the boundaries of the model area the results and budgets are focussed on the North Sea area. For this region the model was validated against climatological values of nitrate as representative nutrient. For all three years the North Sea was found to be net heterotrophic: organic material was imported, inorganic material was exported. The strength of this "remineralisation-machine" was large during NAOI-high years (1994 and 1995). It was weaker in 1996 with a low NAOI. This was caused by higher net primary production in the northern North Sea during summer 1996. In this year the stratification was weaker and began later allowing the deep nutrient-rich water in the northern North Sea to be mixed into the upper layers also during early summer
    • …
    corecore