11,105 research outputs found

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    The lattice Schwarzian KdV equation and its symmetries

    Full text link
    In this paper we present a set of results on the symmetries of the lattice Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point symmetries and, using its associated spectral problem, an infinite sequence of generalized symmetries and master symmetries. We finally show that we can use master symmetries of the lSKdV equation to construct non-autonomous non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE VI

    Heun equation, Teukolsky equation, and type-D metrics

    Full text link
    Starting with the whole class of type-D vacuum backgrounds with cosmological constant we show that the separated Teukolsky equation for zero rest-mass fields with spin s=±2s=\pm 2 (gravitational waves), s=±1s=\pm 1 (electromagnetic waves) and s=±1/2s=\pm 1/2 (neutrinos) is an Heun equation in disguise.Comment: 27 pages, corrected typo in eq. (1

    Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory

    Get PDF
    The static, cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.Comment: 8 pages, Revtex; Published versio

    Multiscale reduction of discrete nonlinear Schroedinger equations

    Full text link
    We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schroedinger equation.Comment: 12 page

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations

    Classification of discrete systems on a square lattice

    Full text link
    We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice

    Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method

    Full text link
    The application of the Gardner method for generation of conservation laws to all the ABS equations is considered. It is shown that all the necessary information for the application of the Gardner method, namely B\"acklund transformations and initial conservation laws, follow from the multidimensional consistency of ABS equations. We also apply the Gardner method to an asymmetric equation which is not included in the ABS classification. An analog of the Gardner method for generation of symmetries is developed and applied to discrete KdV. It can also be applied to all the other ABS equations

    Vortex configurations of bosons in an optical lattice

    Full text link
    The single vortex problem in a strongly correlated bosonic system is investigated self-consistently within the mean-field theory of the Bose-Hubbard model. Near the superfluid-Mott transition, the vortex core has a tendency toward the Mott-insulating phase, with the core particle density approaching the nearest commensurate value. If the nearest neighbor repulsion exists, the charge density wave order may develop locally in the core. The evolution of the vortex configuration from the strong to weak coupling regions is studied. This phenomenon can be observed in systems of rotating ultra-cold atoms in optical lattices and Josephson junction arraysComment: 4 pages, 4 figs, Accepted by Physics Review
    corecore