143,999 research outputs found

    Magnetic Oscillations of a Fractional Hall Dot

    Full text link
    We show that a quantum dot in the fractional Hall regime exhibits mesoscopic magnetic oscillations with a period which is a multiple of the period for free electrons. Our calculations are performed for parabolic quantum dots with hard-core electron-electron interactions and are exact in the strong field limit for kBTk_B T smaller than the fractional Hall gap. Explicit expressions are given for the temperature dependence of the amplitude of the oscillations.Comment: 11 pages, IUCM-004, plain te

    Magnetic and electric field meters developed for the US Department of Energy

    Get PDF
    This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the presence of the probe and provides electric isolation for the probe, so that it could be used in a high field or high voltage environment. Power to operate the sensor electronics is transferred via an optical fiber, and converted to electrical form by a small photodiode array. The fundamental, the second and third harmonics of the field are filtered and separately measured, as well as the broadband rms level of the field. The design of the meter is described in detail and data from laboratory tests are presented. The report also describes work done to improve the performance of a DC bushing in a Swedish factory, using the improved meter. The DC electric fields are measured with synchronous detection to provide field magnitude data in two component directions

    Subgravity simulator Patent

    Get PDF
    Apparatus for training astronaut crews to perform on simulated lunar surface under conditions of lunar gravit

    Pneumatic amplifier Patent

    Get PDF
    Pneumatic servoamplifier for controlling flow regulatio

    Fluid power transmission Patent

    Get PDF
    Fluid power transmission and gas bearing syste

    Pneumatic power is transmitted through air bearing

    Get PDF
    A more efficient method for supplying high pressure air to an air bearing and pneumatic equipment mounted on it has been developed. The system uses a conventional air bearing and an air-supported sphere with a central passage. High pressure air is channeled through it into the pneumatic equipment on the sphere

    Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    Get PDF
    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors

    Decoupled control of a long flexible beam in orbit

    Get PDF
    Control involved commanding changes in pitch attitude as well as nulling initial disturbances in the pitch and flexible modes. Control force requirements were analyzed. Also, the effects of parameter uncertainties on the decoupling process were analyzed and were found to be small. Two methods were investigated: the system was completely coupled and certain actuators were then eliminated, one by one, which resulted in some or all modes not fully controlled; specified modes of the system were excluded from the decoupling control law by employing viewer control actuators than modes in the model. In both methods, adjustments were made in the feedback gains to include the uncontrolled modes in the overall control of the system

    Effects of errors on decoupled control systems

    Get PDF
    Various error sources in a decoupled control system are considered in connection with longitudinal control on a simulated externally blown jet-flap STOL aircraft. The system employed the throttle, horizontal tail, and flaps to decouple the forward velocity, pitch angle, and flight-path angle. The errors considered were: (1) imperfect knowledge of airplane aerodynamic and control characteristics; (2) imperfect measurements of airplane state variables; (3) change in flight conditions, and (4) lag in the airplane controls and in engine response. The effects of the various errors on the decoupling process were generally minor. Significant coupling in flight-path angle was caused by control lag during speed-command maneuvers. However, this coupling could be eliminated by including the control lag in the design of the decoupled system. Other error sources affected primarily the commanded response quantity
    • …
    corecore