16,158 research outputs found

    Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra Earthquake

    Get PDF
    History of instrumental seismology is short. Seismograms are available only for a little more than 100 years; high-quality seismograms are available only for the last 50 years and the seismological database is very limited in time. To extend the database, seismograms of old events are of vital importance. Many unusual earthquakes are known to have occurred, but their seismological characteristics are poorly known. The 1907 Sumatra earthquake is one of them (1907 January 4, M= 7.6). Gutenberg and Richter located this event in the outer-rise area of the Sunda arc. This earthquake is known to be anomalous because of its extensive tsunami, which is disproportionate of its magnitude. The tsunami affected the coastal areas over 950 km along the Sumatran coast. We investigated this earthquake using the historical seismograms we could collect from several seismological observatories. We examined the P-wave arrival times listed in the Strassburg Bulletin (1912) and other station bulletins. The scatter of the Observed−Computed traveltime residuals ranges from –30 to 30 s, too large to locate the event accurately. The uncertainty of the epicentre estimated from an S-P grid-search relocation study is at least 1° (~110 km). We interpreted the Omori seismograms from Osaka, Mizusawa and Tokyo, and the Wiechert seismograms from Göttingen and Uppsala by comparing them with the seismograms simulated from modern broad-band seismograms of the 2002, 2008 and two 2010 Sumatra earthquakes which occurred near the 1907 earthquake. From the amplitude of Rayleigh waves recorded on the Omori seismograms we conclude that the magnitude of the 1907 earthquake at about 30 to 40 s is about 7.8 (i.e. 7.5 to 8.0). The SH waveforms recorded on the Göttingen and Uppsala seismograms suggest that the 1907 earthquake is a thrust earthquake at a shallow depth around 30 km. The most likely scenario is that the 1907 earthquake initiated on the subduction interface, and slowly ruptured up-dip into the shallow sediments and caused the extensive tsunami. Although their quantity and quality are limited, historical seismograms provide key quantitative information about old events that cannot be obtained otherwise. This underscores the importance of preserving historical seismograms

    Radiation induced zero-resistance states: a dressed electronic structure effect

    Get PDF
    Recent results on magnetoresistance in a two dimensional electron gas under crossed magnetic and microwave fields show a new class of oscillations, suggesting a new kind of zero-resistance states. A complete understanding of the effect is still lacking. We consider the problem from the point of view of the electronic structure dressed by photons due to a in plane linearly polarized ac field. The dramatic changes in the dressed electronic structure lead to a interpretation of the new magnetoresistance oscillations as a persistent-current like effect, induced by the radiation field.Comment: 5 pages, 5 figures, revtex4, changes in introduction and added reference

    Commensurate-Incommensurate Magnetic Phase Transition in Magnetoelectric Single Crystal LiNiPO4_4

    Full text link
    Neutron scattering studies of single-crystal LiNiPO4_4 reveal a spontaneous first-order commensurate-incommensurate magnetic phase transition. Short- and long-range incommensurate phases are intermediate between the high temperature paramagnetic and the low temperature antiferromagnetic phases. The modulated structure has a predominant antiferromagnetic component, giving rise to satellite peaks in the vicinity of the fundamental antiferromagnetic Bragg reflection, and a ferromagnetic component giving rise to peaks at small momentum-transfers around the origin at (0,±Q,0)(0,\pm Q,0). The wavelength of the modulated magnetic structure varies continuously with temperature. It is argued that the incommensurate short- and long-range phases are due to spin-dimensionality crossover from a continuous to the discrete Ising state. These observations explain the anomalous first-order transition seen in the magnetoelectric effect of this system
    corecore