5,403 research outputs found

    Is "just-so" Higgs splitting needed for t-b-\tau Yukawa unified SUSY GUTs?

    Full text link
    Recent renormalization group calculations of the sparticle mass spectrum in the Minimal Supersymmetric Standard Model (MSSM) show that t-b-\tau Yukawa coupling unification at M_{\rm GUT} is possible when the mass spectra follow the pattern of a radiatively induced inverted scalar mass hierarchy. The calculation is entirely consistent with expectations from SO(10) SUSY GUT theories, with one exception: it seems to require MSSM Higgs soft term mass splitting at M_{\rm GUT}, dubbed "just-so Higgs splitting" (HS) in the literature, which apparently violates the SO(10) gauge symmetry. Here, we investigate three alternative effects: {\it i}). SO(10) D-term splitting, {\it ii}). inclusion of right hand neutrino in the RG calculation, and {\it iii}). first/third generation scalar mass splitting. By combining all three effects (the DR3 model), we find t-b-\tau Yukawa unification at M_{\rm GUT} can be achieved at the 2.5% level. In the DR3 case, we expect lighter (and possibly detectable) third generation and heavy Higgs scalars than in the model with HS. In addition, the light bottom squark in DR3 should be dominantly a right state, while in the HS model, it is dominantly a left state.Comment: 21 pages with 11 .eps figures; revised version added two reference

    Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs

    Get PDF
    Simple supersymmetric grand unified models based on the gauge group SO(10) require --in addition to gauge and matter unification-- the unification of t-b-\tau Yukawa couplings. Yukawa unification, however, only occurs for very special values of the soft SUSY breaking parameters. We perform a search using a Markov Chain Monte Carlo (MCMC) technique to investigate model parameters and sparticle mass spectra which occur in Yukawa-unified SUSY models, where we also require the relic density of neutralino dark matter to saturate the WMAP-measured abundance. We find the spectrum is characterizd by three mass scales: first/second generation scalars in the multi-TeV range, third generation scalars in the TeV range, and gauginos in the \sim 100 GeV range. Most solutions give far too high a relic abundance of neutralino dark matter. The dark matter discrepancy can be rectified by 1. allowing for neutralino decay to axino plus photon, 2. imposing gaugino mass non-universality or 3. imposing generational non-universality. In addition, the MCMC approach finds 4. a compromise solution where scalar masses are not too heavy, and where neutralino annihilation occurs via the light Higgs h resonance. By imposing weak scale Higgs soft term boundary conditions, we are also able to generate 5. low \mu, m_A solutions with neutralino annihilation via a light A resonance, though these solutions seem to be excluded by CDF/D0 measurements of the B_s\to \mu^+\mu^- branching fraction. Based on the dual requirements of Yukawa coupling unification and dark matter relic density, we predict new physics signals at the LHC from pair production of 350--450 GeV gluinos. The events are characterized by very high b-jet multiplicity and a dilepton mass edge around mz2-mz1 \sim 50-75 GeV.Comment: 35 pages with 21 eps figure

    On the presentation of the LHC Higgs Results

    Full text link
    We put forth conclusions and suggestions regarding the presentation of the LHC Higgs results that may help to maximize their impact and their utility to the whole High Energy Physics community.Comment: Conclusions from the workshops "Likelihoods for the LHC Searches", 21-23 January 2013 at CERN, "Implications of the 125 GeV Higgs Boson", 18-22 March 2013 at LPSC Grenoble, and from the 2013 Les Houches "Physics at TeV Colliders" workshop. 16 pages, 3 figures. Version 2: Comment added on the first publication of signal strength likelihoods in digital form by ATLA

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Constraints on supersymmetry with light third family from LHC data

    Full text link
    We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE

    Les Houches 2015: Physics at TeV colliders - new physics working group report

    Get PDF
    We present the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments. Important signatures for searches for natural new physics at the LHC and new assessments of the interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page

    WZ plus missing-E_T signal from gaugino pair production at LHC7

    Get PDF
    LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m_{\tg}> 500 GeV as indicated by recent LHC results, chargino--neutralino (\tw_1^\pm\tz_2) production is the dominant cross section for m_{\tw_1} \sim m_{\tz_2} < m_{\tg}/3 at LHC with \sqrt{s}=7 TeV (LHC7). Furthermore, if m_{\tz_1}+m_Z \lesssim m_{\tz_2}\lesssim m_{\tz_1}+m_h, then \tz_2 dominantly decays via \tz_2\to\tz_1 Z, while \tw_1 decays via \tw_1\to \tz_1 W. We investigate the LHC7 reach in the WZ + MET channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the WZ+MET channel becomes competetive with the reach in the canonical MET + jets channel for integrated luminosities \sim 30 fb^-1. We also present the LHC7 reach for a simplified model with arbitrary m_{\tz_1} and m_{\tw_1} \sim m_{\tz_2}. Here, we find a reach of up to m_{\tw_1}\sim 200 (250) GeV for 10 (30) fb^-1.Comment: 15 pages including 9 .eps figure

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity
    corecore