Recent renormalization group calculations of the sparticle mass spectrum in
the Minimal Supersymmetric Standard Model (MSSM) show that t-b-\tau Yukawa
coupling unification at M_{\rm GUT} is possible when the mass spectra follow
the pattern of a radiatively induced inverted scalar mass hierarchy. The
calculation is entirely consistent with expectations from SO(10) SUSY GUT
theories, with one exception: it seems to require MSSM Higgs soft term mass
splitting at M_{\rm GUT}, dubbed "just-so Higgs splitting" (HS) in the
literature, which apparently violates the SO(10) gauge symmetry. Here, we
investigate three alternative effects: {\it i}). SO(10) D-term splitting, {\it
ii}). inclusion of right hand neutrino in the RG calculation, and {\it iii}).
first/third generation scalar mass splitting. By combining all three effects
(the DR3 model), we find t-b-\tau Yukawa unification at M_{\rm GUT} can be
achieved at the 2.5% level. In the DR3 case, we expect lighter (and possibly
detectable) third generation and heavy Higgs scalars than in the model with HS.
In addition, the light bottom squark in DR3 should be dominantly a right state,
while in the HS model, it is dominantly a left state.Comment: 21 pages with 11 .eps figures; revised version added two reference