8,633 research outputs found

    Rectenna system design

    Get PDF
    The function of the rectenna in the solar power satellite system is described and the basic design choices based on the desired microwave field concentration and ground clearance requirements are given. One important area of concern, from the EMI point of view, harmonic reradiation and scattering from the rectenna is also designed. An optimization of a rectenna system design to minimize costs was performed. The rectenna cost breakdown for a 56 w installation is given as an example

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    Chaotic saddles in nonlinear modulational interactions in a plasma

    Full text link
    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres

    Classical limit of transport in quantum kicked maps

    Full text link
    We investigate the behavior of weak localization, conductance fluctuations, and shot noise of a chaotic scatterer in the semiclassical limit. Time resolved numerical results, obtained by truncating the time-evolution of a kicked quantum map after a certain number of iterations, are compared to semiclassical theory. Considering how the appearance of quantum effects is delayed as a function of the Ehrenfest time gives a new method to compare theory and numerical simulations. We find that both weak localization and shot noise agree with semiclassical theory, which predicts exponential suppression with increasing Ehrenfest time. However, conductance fluctuations exhibit different behavior, with only a slight dependence on the Ehrenfest time.Comment: 17 pages, 13 figures. Final versio

    Room-temperature tunnel current amplifier and experimental setup for high resolution electronic spectroscopy in millikelvin STM experiments

    Get PDF
    The spectroscopic resolution of tunneling measurements performed with a scanning tunneling microscope is ultimately limited by the temperature at which the experiment is performed. To take advantage of the potential high spectroscopic resolution associated with operating an STM in a dilution refrigerator we have designed a room temperature tunnel current amplifier having very small back-action on the tunnel contact and allowing to nearly reach the predicted energy resolution. This design is a modification of the standard op-amp based tip-biasing current-voltage converter which implements differential voltage sensing and whose back action on the tip voltage is only ~2 ÎĽ\muV rms for a 14 MV/A transimpedance and 22 kHz bandwidth.Comment: Available at http://www-spht.cea.fr/articles/s06/03

    ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics

    Get PDF
    The sodium laser guide star adaptive optics system ALFA has been constructed at the Calar Alto 3.5-m telescope. Following the first detection of the laser beacon on the wavefront sensor in 1997 the system is now being optimized for best performance. In this contribution we discuss the current status of the launch beam and the planned improvements and upgrades. We report on the performance level achieved when it is used with the adaptive optics system, and relate various aspects of our experience during operation of the system. We have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive Optical System Technologies, March 199

    Neutron scattering study of novel magnetic order in Na0.5CoO2

    Full text link
    We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.Comment: 4 pages, 4 figure

    Critical dynamics of phase transition driven by dichotomous Markov noise

    Full text link
    An Ising spin system under the critical temperature driven by a dichotomous Markov noise (magnetic field) with a finite correlation time is studied both numerically and theoretically. The order parameter exhibits a transition between two kinds of qualitatively different dynamics, symmetry-restoring and symmetry-breaking motions, as the noise intensity is changed. There exist regions called channels where the order parameter stays for a long time slightly above its critical noise intensity. Developing a phenomenological analysis of the dynamics, we investigate the distribution of the passage time through the channels and the power spectrum of the order parameter evolution. The results based on the phenomenological analysis turn out to be in quite good agreement with those of the numerical simulation.Comment: 27 pages, 12 figure

    Local electronic structure of Fe2+^{2+} impurities in MgO thin films: Temperature-dependent soft x-ray absorption spectroscopy study

    Full text link
    We report on the local electronic structure of Fe impurities in MgO thin films. Using soft x-ray absorption spectroscopy (XAS) we verified that the Fe impurities are all in the 2+ valence state. The fine details in the line shape of the Fe L2,3L_{2,3} edges provide direct evidence for the presence of a dynamical Jahn-Teller distortion. We are able to determine the magnitude of the effective D4hD_{4h} crystal field energies. We also observed a strong temperature dependence in the spectra which we can attribute to the thermal population of low-lying excited states that are present due to the spin-orbit coupling in the Fe 3d. Using this Fe2+^{2+} impurity system as an example, we show that an accurate measurement of the orbital moment in Fe3_3O4_4 will provide a direct estimate for the effective local low-symmetry crystal fields on the Fe2+^{2+} sites, important for the theoretical modeling of the formation of orbital ordering
    • …
    corecore