210 research outputs found

    Efficient Immunization Strategies for Computer Networks and Populations

    Full text link
    We present an effective immunization strategy for computer networks and populations with broad and, in particular, scale-free degree distributions. The proposed strategy, acquaintance immunization, calls for the immunization of random acquaintances of random nodes (individuals). The strategy requires no knowledge of the node degrees or any other global knowledge, as do targeted immunization strategies. We study analytically the critical threshold for complete immunization. We also study the strategy with respect to the susceptible-infected-removed epidemiological model. We show that the immunization threshold is dramatically reduced with the suggested strategy, for all studied cases.Comment: Revtex, 5 pages, 4 ps fig

    Arrival Time Statistics in Global Disease Spread

    Get PDF
    Metapopulation models describing cities with different populations coupled by the travel of individuals are of great importance in the understanding of disease spread on a large scale. An important example is the Rvachev-Longini model [{\it Math. Biosci.} {\bf 75}, 3-22 (1985)] which is widely used in computational epidemiology. Few analytical results are however available and in particular little is known about paths followed by epidemics and disease arrival times. We study the arrival time of a disease in a city as a function of the starting seed of the epidemics. We propose an analytical Ansatz, test it in the case of a spreading on the world wide air transportation network, and show that it predicts accurately the arrival order of a disease in world-wide cities

    Immunization of networks with community structure

    Full text link
    In this study, an efficient method to immunize modular networks (i.e., networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on the eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.Comment: 3 figures, 1 tabl

    Velocity and hierarchical spread of epidemic outbreaks in scale-free networks

    Get PDF
    We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.Comment: 4 pages, 4 figures, final versio

    Epidemic variability in complex networks

    Full text link
    We study numerically the variability of the outbreak of diseases on complex networks. We use a SI model to simulate the disease spreading at short times, in homogeneous and in scale-free networks. In both cases, we study the effect of initial conditions on the epidemic's dynamics and its variability. The results display a time regime during which the prevalence exhibits a large sensitivity to noise. We also investigate the dependence of the infection time on nodes' degree and distance to the seed. In particular, we show that the infection time of hubs have large fluctuations which limit their reliability as early-detection stations. Finally, we discuss the effect of the multiplicity of shortest paths between two nodes on the infection time. Furthermore, we demonstrate that the existence of even longer paths reduces the average infection time. These different results could be of use for the design of time-dependent containment strategies

    Migration paths saturations in meta-epidemic systems

    Full text link
    In this paper we consider a simple two-patch model in which a population affected by a disease can freely move. We assume that the capacity of the interconnected paths is limited, and thereby influencing the migration rates. Possible habitat disruptions due to human activities or natural events are accounted for. The demographic assumptions prevent the ecosystem to be wiped out, and the disease remains endemic in both populated patches at a stable equilibrium, but possibly also with an oscillatory behavior in the case of unidirectional migrations. Interestingly, if infected cannot migrate, it is possible that one patch becomes disease-free. This fact could be exploited to keep disease-free at least part of the population

    Heterogeneity in connectivity of habitat networks saves stable coexistence of competing species

    Full text link
    Coexistence of individuals with different species or phenotypes is often found in nature in spite of competition between them. Stable coexistence of multiple types of individuals have implications for maintenance of ecological biodiversity and emergence of altruism in society, to name a few. Various mechanisms of coexistence including spatial structure of populations, heterogeneous individuals, and heterogeneous environments, have been proposed. In reality, individuals disperse and interact on complex networks. We examine how heterogeneous degree distributions of networks influence coexistence, focusing on models of cyclically competing species. We show analytically and numerically that heterogeneity in degree distributions promotes stable coexistence.Comment: 4 figure

    Monte Carlo simulation of the transmission of measles: Beyond the mass action principle

    Full text link
    We present a Monte Carlo simulation of the transmission of measles within a population sample during its growing and equilibrium states by introducing two different vaccination schedules of one and two doses. We study the effects of the contact rate per unit time Îľ\xi as well as the initial conditions on the persistence of the disease. We found a weak effect of the initial conditions while the disease persists when Îľ\xi lies in the range 1/L-10/L (LL being the latent period). Further comparison with existing data, prediction of future epidemics and other estimations of the vaccination efficiency are provided. Finally, we compare our approach to the models using the mass action principle in the first and another epidemic region and found the incidence independent of the number of susceptibles after the epidemic peak while it strongly fluctuates in its growing region. This method can be easily applied to other human, animals and vegetable diseases and includes more complicated parameters.Comment: 15 pages, 4 figures, 1 table, Submitted to Phys.Rev.

    Size of Outbreaks Near the Epidemic Threshold

    Full text link
    The spread of infectious diseases near the epidemic threshold is investigated. Scaling laws for the size and the duration of outbreaks originating from a single infected individual in a large susceptible population are obtained. The maximal size of an outbreak n_* scales as N^{2/3} with N the population size. This scaling law implies that the average outbreak size scales as N^{1/3}. Moreover, the maximal and the average duration of an outbreak grow as t_* ~ N^{1/3} and ~ ln N, respectively.Comment: 4 pages, 5 figure

    Epidemic dynamics in finite size scale-free networks

    Get PDF
    Many real networks present a bounded scale-free behavior with a connectivity cut-off due to physical constraints or a finite network size. We study epidemic dynamics in bounded scale-free networks with soft and hard connectivity cut-offs. The finite size effects introduced by the cut-off induce an epidemic threshold that approaches zero at increasing sizes. The induced epidemic threshold is very small even at a relatively small cut-off, showing that the neglection of connectivity fluctuations in bounded scale-free networks leads to a strong over-estimation of the epidemic threshold. We provide the expression for the infection prevalence and discuss its finite size corrections. The present work shows that the highly heterogeneous nature of scale-free networks does not allow the use of homogeneous approximations even for systems of a relatively small number of nodes.Comment: 4 pages, 2 eps figure
    • …
    corecore