75 research outputs found

    The Cygnus X region XXII. A probable HAeBe star with a giant bipolar outflow in DR 16

    Full text link
    From medium-resolution radio images, DR 16 was suspected to be a large cometary nebula. To test this suggestion we obtained a higher resolution (15\arcsec) VLA continuum map. We also analyzed data from the Canadian Galactic Plane Survey in continuum, H I line, and IR. These data were supplemented by published near-infrared (J, H, K) stellar photometric results and MSX 8.28 micrometer data. We suggest that DR 16 is the diffuse H II region of an ongoing star formation site at a distance of about 3 kpc. The complicated radio picture arises from the superposition of diffuse H II with the remains of a giant bipolar outflow. The outflow was generated by a probable Herbig AeBe star, and the lobes are the remnants of its working surfaces. Additional ring-like features are discussed. DR 16 is part of a larger volume of space in the local spiral arm where star formation is an ongoing process.Comment: 15 pages, 14 figures, accepted by A&

    X-ray Emission from Wind Blown Bubbles. III. ASCA SIS Observations of NGC6888

    Full text link
    We present ASCA SIS observations of the wind-blown bubble NGC6888. Owing to the higher sensitivity of the SIS for higher energy photons compared to the ROSAT PSPC, we are able to detect a T ~ 8x10^6 K plasma component in addition to the T ~ 1.3x10^6 K component previously detected in PSPC observations. No significant temperature variations are detected within NGC6888. Garcia-Segura & Mac Low's (1995) analytical models of WR bubbles constrained by the observed size, expansion velocity, and mass of the nebular shell under-predict the stellar wind luminosity, and cannot reproduce simultaneously the observed X-ray luminosity, spectrum, surface brightness profile, and SIS count rate of NGC6888's bubble interior. The agreement between observations and expectations from models can be improved if one or more of the following ad hoc assumptions are made: (1) the stellar wind luminosity was weaker in the past, (2) the bubble is at a special evolutionary stage and the nebular shell has recently been decelerated to 1/2 of its previous expansion velocity, and (3) the heat conduction between the hot interior and the cool nebular shell is suppressed. Chandra and XMM-Newton observations with high spatial resolution and high sensitivity are needed to determine accurately the physical conditions NGC6888's interior hot gas for critical comparisons with bubble models.Comment: 24 pages, 6 figures; accepted for Astrophysical Journal, Nov 1, 2005 issu

    Probing the Interstellar Medium using HI absorption and emission towards the W3 HII region

    Full text link
    HI spectra towards the W3 HII complex are presented and used to probe the Galactic structure and interstellar medium conditions between us and this region. The overall shape of the spectra is consistent with the predictions of the Two-Arm Spiral Shock model wherein the gas found in the -40 km/s to -50 km/s range has been accelerated by some 20 km/s from its rotation curve velocity. Spin temperatures of ~100 K are derived for the Local Arm gas, lower than found in a previous, similar study towards DR 7. For the interarm region, values on the order of 300 K are found, implying a negligible filling factor for the Cold Neutral Medium (<< 1%). Some of the absorbing gas at velocities near -40 km/s is confirmed to be associated with the HII regions.Comment: 23 pages, 6 figures, accepted for publication in the Astronomical Journa

    Massive stars and the energy balance of the interstellar medium. II. The 35 solar mass star and a solution to the "missing wind problem"

    Full text link
    We continue our numerical analysis of the morphological and energetic influence of massive stars on their ambient interstellar medium for a 35 solar mass star that evolves from the main sequence through red supergiant and Wolf-Rayet phases, until it ultimately explodes as a supernova. We find that structure formation in the circumstellar gas during the early main-sequence evolution occurs as in the 60 solar mass case but is much less pronounced because of the lower mechanical wind luminosity of the star. Since on the other hand the shell-like structure of the HII region is largely preserved, effects that rely on this symmetry become more important. At the end of the stellar lifetime 1% of the energy released as Lyman continuum radiation and stellar wind has been transferred to the circumstellar gas. From this fraction 10% is kinetic energy of bulk motion, 36% is thermal energy, and the remaining 54% is ionization energy of hydrogen. The sweeping up of the slow red supergiant wind by the fast Wolf-Rayet wind produces remarkable morphological structures and emission signatures, which are compared with existing observations of the Wolf-Rayet bubble S308. Our model reproduces the correct order of magnitude of observed X-ray luminosity, the temperature of the emitting plasma as well as the limb brightening of the intensity profile. This is remarkable, because current analytical and numerical models of Wolf-Rayet bubbles fail to consistently explain these features. A key result is that almost the entire X-ray emission in this stage comes from the shell of red supergiant wind swept up by the shocked Wolf-Rayet wind rather than from the shocked Wolf-Rayet wind itself as hitherto assumed and modeled. This offers a possible solution to what is called the ``missing wind problem'' of Wolf-Rayet bubbles.Comment: 52 pages, 20 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment

    Full text link
    The MAGIC Collaboration has provided new observational data pertaining to the TeV J2032+4130 gamma-ray source (within the Cygnus OB2 region), for energies E_gamma >400 GeV. It is then appropriate to update the impact of these data on gamma-ray production mechanisms in stellar associations. We consider two mechanisms of gamma-ray emission, pion production and decay (PION) and photo-excitation of high-energy nuclei followed by prompt photo-emission from the daughter nuclei (A*). We find that while the data can be accommodated with either scenario, the A* features a spectral bump, corresponding to the threshold for exciting the Giant Dipole Resonance, which can serve to discriminate between them. We comment on neutrino emission and detection from the region if the PION and/or A* processes are operative. We also touch on the implications for this analysis of future Fermi and Cerenkov Telescope Array data.Comment: 6 pp, 2 figs. Matching version publihed in Phys. Rev.

    A Self-Absorption Census of Cold HI Clouds in the Canadian Galactic Plane Survey

    Full text link
    We present a 21cm line HI self-absorption (HISA) survey of cold atomic gas within Galactic longitudes 75 to 146 degrees and latitudes -3 to +5 degrees. We identify HISA as spatially and spectrally confined dark HI features and extract it from the surrounding HI emission in the arcminute-resolution Canadian Galactic Plane Survey (CGPS). We compile a catalog of the most significant features in our survey and compare our detections against those in the literature. Within the parameters of our search, we find nearly all previously detected features and identify many new ones. The CGPS shows HISA in much greater detail than any prior survey and allows both new and previously-discovered features to be placed into the larger context of Galactic structure. In space and radial velocity, faint HISA is detected virtually everywhere that the HI emission background is sufficiently bright. This ambient HISA population may arise from small turbulent fluctuations of temperature and velocity in the neutral interstellar medium. By contrast, stronger HISA is organized into discrete complexes, many of which follow a longitude-velocity distribution that suggests they have been made visible by the velocity reversal of the Perseus arm's spiral density wave. The cold HI revealed in this way may have recently passed through the spiral shock and be on its way to forming molecules and, eventually, new stars. This paper is the second in a series examining HISA at high angular resolution. A companion paper (Paper III) describes our HISA search and extraction algorithms in detail.Comment: 44 pages, including 13 figure pages; to appear in June 10 ApJ, volume 626; figure quality significantly reduced for astro-ph; for full resolution, please see http://www.ras.ucalgary.ca/~gibson/hisa/cgps1_survey

    ASCA View of the Supernova Remnant Gamma Cygni (G78.2+2.1): Bremsstrahlung X-ray Spectrum from Loss-flattened Electron Distribution

    Full text link
    We perform X-ray studies of the shell-type supernova remnant (SNR) gamma-Cygni associated with the brightest EGRET unidentified source 3EG J2020+4017. In addition to the thermal emissions with characteristic temperature of kT = 0.5-0.9 keV, we found an extremely hard X-ray component from several clumps localized in the northern part of the remnant. This component is described by a power-law with a photon index of 0.8-1.5. Both the absolute flux and the spectral shape of the nonthermal X-rays cannot be explained by the synchrotron or inverse-Compton mechanisms. We argue that the unusually hard X-ray spectrum can be naturally interpreted in terms of nonthermal bremsstrahlung from Coulomb-loss-flattened electron distribution in dense environs with the gas density about 10 to 100 cm^-3 . For given spectrum of the electron population, the ratio of the bremsstrahlung X- and gamma-ray fluxes depends on the position of the ``Coulomb break'' in the electron spectrum. The bulk of gamma-rays detected by EGRET would come from the radio-bright and X-ray dim cloud at southeast, where very dense gas and strong magnetic field would illuminate the cloud in the radio and gamma-ray bands, but suppress the bremsstrahlung X-ray emission due to the shift of the ``Coulomb break'' in the electron spectrum towards higher energies.Comment: 14 pages, 8 figures, emulateapj5, accepted for publication in the Astrophysical Journa
    corecore