109 research outputs found

    Structure and vibrational spectra of carbon clusters in SiC

    Full text link
    The electronic, structural and vibrational properties of small carbon interstitial and antisite clusters are investigated by ab initio methods in 3C and 4H-SiC. The defects possess sizable dissociation energies and may be formed via condensation of carbon interstitials, e.g. generated in the course of ion implantation. All considered defect complexes possess localized vibrational modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the compact antisite clusters exhibit high-frequency LVM's up to 250meV. The isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of these results, the photoluminescence centers D_{II} and P-U are discussed. The dicarbon antisite is identified as a plausible key ingredient of the D_{II}-center, whereas the carbon split-interstitial is a likely origin of the P-T centers. The comparison of the calculated and observed high-frequency modes suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.

    Infrared phonons and specific heat in Ba3Cr2O8

    Get PDF
    We report on the phonon spectrum of Ba3Cr2O8 determined by infrared spectroscopy, and on specific heat measurements across the Jahn-Teller transition in magnetic fields up to 9 T. Phonon modes split below the Jahn-Teller transition, which occurs at T_{JT} = 70 K as detected by specific heat measurements. The field-dependent specific heat data is analyzed in terms of the contributions from lattice, magnetic and orbital degrees of freedom. In contrast to the isostructural compound Sr3Cr2O8 our analysis does not indicate the existence of orbital fluctuations below the Jahn-Teller transition in Ba3Cr2O8.Comment: 5 pages, 4 figure

    Singlet-triplet dispersion reveals additional frustration in the triangular dimer compound Ba3_3Mn2_2O8_8

    Full text link
    We present single crystal inelastic neutron scattering measurements of the S=1 dimerized quasi-two-dimensional antiferromagnet Ba3_3Mn2_2O8_8. The singlet-triplet dispersion reveals nearest-neighbor and next-nearest-neighbor ferromagnetic interactions between adjacent bilayers that compete against each other. Although the inter-bilayer exchange is comparable to the intra-bilayer exchange, this additional frustration reduces the effective coupling along the c-axis and leads to a quasi-two dimensional behavior. In addition, the obtained exchange values are able to reproduce the four critical fields in the phase diagram.Comment: 4 pages, 3 color figures, submitted to an APS physical review journa

    Angle-resolved photoemission spectra of graphene from first-principles calculations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique for directly probing electron dynamics in solids. The energy vs. momentum dispersion relations and the associated spectral broadenings measured by ARPES provide a wealth of information on quantum many-body interaction effects. In particular, ARPES allows studies of the Coulomb interaction among electrons (electron-electron interactions) and the interaction between electrons and lattice vibrations (electron-phonon interactions). Here, we report ab initio simulations of the ARPES spectra of graphene including both electron-electron and electron-phonon interactions on the same footing. Our calculations reproduce some of the key experimental observations related to many-body effects, including the indication of a mismatch between the upper and lower halves of the Dirac cone

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    Symmetry Breaking in Few Layer Graphene Films

    Full text link
    Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this article we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing ED.Comment: 23 pages, 13 figures, Conference Proceedings of DPG Meeting Mar 2007 Regensburg Submitted to New Journal of Physic

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Quantum interference of electrons in Nb_{5-\delta}Te_4 single crystals

    Full text link
    The compound Nb5−δTe4Nb_{5-\delta}Te_4 (δ=0.23\delta=0.23) with quasi-one-dimensional crystal structure undergoes a transition to superconductivity at TcT_c=0.6--0.9 K. Its electronic transport properties in the normal state are studied in the temperature range 1.3--270 K and in magnetic fields up to 11 T. The temperature variation of the resistivity is weak (<2<2%) in the investigated temperature range. Nonmonotonic behavior of the resistivity is observed which is characterized by two local maxima at T∼T\sim2 K and ∼\sim30 K. The temperature dependence of the resistivity is interpreted as an interplay of weak localization, weak antilocalization, and electron-electron interaction effects in the diffusion and the Cooper channel. The temperature dependence of the dephasing time τϕ\tau_\phi extracted from the magnetoresistance data is determined by the electron-phonon interaction. The saturation of τϕ\tau_\phi in the low-temperature limit correlates with TcT_c of the individual crystal and is ascribed to the scattering on magnetic impurities.Comment: 8 pages, 6 figure

    Size Quantization in Planar Graphene-Based Heterostructures: Pseudospin Splitting, Interface States, and Excitons

    Full text link
    A planar quantum-well device made of a gapless graphene nanoribbon with edges in contact with gapped graphene sheets is examined. The size-quantization spectrum of charge carriers in an asymmetric quantum well is shown to exhibit a pseudospin splitting. Interface states of a new type arise from the crossing of dispersion curves of gapless and gapped graphene materials. The exciton spectrum is calculated for a planar graphene quantum well. The effect of an external electric field on the exciton spectrum is analyzed.Comment: 15 pages, 14 figure
    • …
    corecore