2,445 research outputs found

    Experimental realization of SQUIDs with topological insulator junctions

    Get PDF
    We demonstrate topological insulator (Bi2_2Te3_3) dc SQUIDs, based on superconducting Nb leads coupled to nano-fabricated Nb-Bi2_2Te3_3-Nb Josephson junctions. The high reproducibility and controllability of the fabrication process allows the creation of dc SQUIDs with parameters that are in agreement with design values. Clear critical current modulation of both the junctions and the SQUID with applied magnetic fields have been observed. We show that the SQUIDs have a periodicity in the voltage-flux characteristic of Φ0\Phi_0, of relevance to the ongoing pursuit of realizing interferometers for the detection of Majorana fermions in superconductor- topological insulator structures

    Transport and thermoelectric properties of the LaAlO3_3/SrTiO3_3 interface

    Get PDF
    The transport and thermoelectric properties of the interface between SrTiO3_3 and a 26-monolayer thick LaAlO3_3-layer grown at high oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and in magnetic fields up to 18 T. For T>T> 4.2 K, two different electron-like charge carriers originating from two electron channels which contribute to transport are observed. We probe the contributions of a degenerate and a non-degenerate band to the thermoelectric power and develop a consistent model to describe the temperature dependence of the thermoelectric tensor. Anomalies in the data point to an additional magnetic field dependent scattering.Comment: 7 pages, 4 figure

    Evidence of two-dimensional macroscopic quantum tunneling of a current-biased DC-SQUID

    Get PDF
    The escape probability out of the superconducting state of a hysteretic DC-SQUID has been measured at different values of the applied magnetic flux. At low temperature, the escape current and the width of the probability distribution are temperature independent but they depend on flux. Experimental results do not fit the usual one-dimensional (1D) Macroscopic Quantum Tunneling (MQT) law but are perfectly accounted for by the two-dimensional (2D) MQT behaviour as we propose here. Near zero flux, our data confirms the recent MQT observation in a DC-SQUID \cite{Li02}.Comment: 4 pages, 4 figures Accepted to PR

    Gate-tunable band structure of the LaAlO3_3-SrTiO3_3 interface

    Get PDF
    The 2-dimensional electron system at the interface between LaAlO3_{3} and SrTiO3_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10132.9\times10^{13} cm−2^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure

    Rotational and translational self-diffusion in concentrated suspensions of permeable particles

    Get PDF
    In our recent work on concentrated suspensions of uniformly porous colloidal spheres with excluded volume interactions, a variety of short-time dynamic properties were calculated, except for the rotational self-diffusion coefficient. This missing quantity is included in the present paper. Using a precise hydrodynamic force multipole simulation method, the rotational self-diffusion coefficient is evaluated for concentrated suspensions of permeable particles. Results are presented for particle volume fractions up to 45%, and for a wide range of permeability values. From the simulation results and earlier results for the first-order virial coefficient, we find that the rotational self-diffusion coefficient of permeable spheres can be scaled to the corresponding coefficient of impermeable particles of the same size. We also show that a similar scaling applies to the translational self-diffusion coefficient considered earlier. From the scaling relations, accurate analytic approximations for the rotational and translational self-diffusion coefficients in concentrated systems are obtained, useful to the experimental analysis of permeable-particle diffusion. The simulation results for rotational diffusion of permeable particles are used to show that a generalized Stokes-Einstein-Debye relation between rotational self-diffusion coefficient and high-frequency viscosity is not satisfied.Comment: 4 figure

    Optimizing the Majorana character of SQUIDs with topologically non-trivial barriers

    Get PDF
    We have modeled SQUIDs with topologically non-trivial superconducting junctions and performed an optimization study on the Majorana fermion detection. We find that the SQUID parameters beta_L, and beta_C can be used to increase the ratio of Majorana tunneling to standard Cooper pair tunneling by more than two orders of magnitude. Most importantly, we show that dc SQUIDs including topologically trivial components can still host strong signatures of the Majorana fermion. This paves the way towards the experimental verification of the theoretically predicted Majorana fermion.Comment: accepted by Physical Review

    Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi0.97_{0.97}Sb0.03_{0.03}

    Get PDF
    The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an Eâ‹…B\textbf{E}\cdot\textbf{B}-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi0.97_{0.97}Sb0.03_{0.03}. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi0.97_{0.97}Sb0.03_{0.03}.Comment: 6 pages, 6 figures + 7 pages of supplemental materia

    Coronal density diagnostics with Helium-like triplets: CHANDRA--LETGS observations of Algol, Capella, Procyon, Eps Eri, Alpha Cen A&B, UX Ari, AD Leo, YY Gem, and HR1099

    Get PDF
    We present an analysis of ten cool stars (Algol, Capella, Procyon, Eps Eri, Alpha Cen A&B, UX Ari, AD Leo, YY Gem, and HR1099) observed with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra X-ray Observatory. This sample contains all cools stars observed with the LETGS presently available to us with integration times sufficiently long to warrant a meaningful spectral analysis. Our sample comprises inactive, moderately active, and hyperactive stars and samples the bulk part of activity levels encountered in coronal X-ray sources. We use the LETGS spectra to carry out density and temperature diagnostics with an emphasis on the H-like and the He-like ions. We find a correlation between line flux ratios of the Lyman-Alpha and He-like resonance lines with the mean X-ray surface flux. We determine densities using the He-like triplets. For active stars we find no significant deviations from the low-density limit for the ions of Ne, Mg, and Si, while the measured line ratios for the ions of C, N, and O do show evidence for departures from the low-density limit in the active stars, but not in the inactive stars. Best measurements can be made for the OVII triplet where we find significant deviations from the low-density limit for the stars Algol, Procyon, YY Gem, Eps Eri, and HR1099. We discuss the influence of radiation fields on the interpretation of the He-like triplet line ratios in the low-Z ions, which is relevant for Algol, and the influence of dielectronic satellite lines, which is relevant for Procyon. For the active stars YY Gem, Eps Eri, and HR1099 the low f/i ratios can unambiguously be attributed to high densties in the range 1--3 10^10 cm^-3 at OVII temperatures. We find our LETGS spectra to be an extremely useful tool for plasma diagnostics of stellar coronae.Comment: 17 pages, Latex2e, 12 figures. accepted for A&A under MS262
    • …
    corecore