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Abstract

In our recent work on concentrated suspensions of uniformly porous colloidal spheres with ex-

cluded volume interactions, a variety of short-time dynamic properties were calculated, except for

the rotational self-diffusion coefficient. This missing quantity is included in the present paper.

Using a precise hydrodynamic force multipole simulation method, the rotational self-diffusion co-

efficient is evaluated for concentrated suspensions of permeable particles. Results are presented

for particle volume fractions up to 45%, and for a wide range of permeability values. From the

simulation results and earlier results for the first-order virial coefficient, we find that the rota-

tional self-diffusion coefficient of permeable spheres can be scaled to the corresponding coefficient

of impermeable particles of the same size. We also show that a similar scaling applies to the

translational self-diffusion coefficient considered earlier. From the scaling relations, accurate ana-

lytic approximations for the rotational and translational self-diffusion coefficients in concentrated

systems are obtained, useful to the experimental analysis of permeable-particle diffusion. The

simulation results for rotational diffusion of permeable particles are used to show that a general-

ized Stokes-Einstein-Debye relation between rotational self-diffusion coefficient and high-frequency

viscosity is not satisfied.

∗Electronic address: mekiel@ippt.gov.pl
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I. INTRODUCTION

The rotational and translational self-diffusion of interacting colloidal and macromolecular

particles suspended in a low-molecular-weight solvent is the subject of ongoing research

both experimentally and theoretically [1, 2]. Originally, self-diffusion in dilute systems was

studied, however the center of interest has shifted since to concentrated dispersions where

solvent-mediated many-particle hydrodynamic interactions (HIs) are of central importance.

An example, of biological relevance, is self-diffusion of proteins and other macromolecules

in the crowded environment of a cell [3].

Two central quantities quantifying the configuration-averaged influence of HIs on the

suspensions dynamics are the concentration-dependent short-time rotational and transla-

tional self-diffusion coefficients Dr and Dt, respectively. At zero particle concentration,

these quantities reduce to the single-particle diffusion coefficients Dr
0 and Dt

0. For solvent-

impermeable colloidal hard spheres with stick hydrodynamic surface boundary conditions,

the single-particle coefficients are given by

Dr,hs
0 =

kBT

8πη0a3
(1)

Dt,hs
0 =

kBT

6πη0a
, (2)

with η0 the Newtonian solvent shear viscosity, Boltzmann constant kB, temperature T and

hydrodynamic particle radius a. The influence of the HIs at non-zero concentrations gives

rise to values for Dr and Dt smaller than their respective values Dr
0 and Dt

0 at infinite

dilution. The short-time coefficients describe self-diffusion on the time scale t ≪ a2/Dt
0,

but with t large enough that solvent and particle velocity correlations have decayed. On

the colloidal short-time scale, the concentration dependence of Dr and Dt is determined by

averaging the HIs with the equilibrium particle distribution.

Self-diffusion coefficients in colloidal suspensions have been determined experimentally by

a variety of techniques. The mean-squared displacement (MSD) of partially solvent-index

matched suspensions of colloidal spheres [4, 5] has been measured as a function of time using

dynamic light scattering (DLS), with Dt determined from the initial slope of the MSD.

For the vast majority of systems where this specialized index-matching technique is not

applicable, Dt may be inferred, to decent accuracy according to theory and simulation [6–8],

from a first cumulant analysis of the scattered light electric field autocorrelation function,
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probed at a scattering wavenumber larger than the peak location of the static structure factor

where the structure factor attains the value one [9–11]. Translational long-time self-diffusion

coefficients not considered in the present work can be determined using, e.g., forced Rayleigh

scattering [12, 13], fluorescence recovery after photobleaching (FRAP) [2], and fluorescence

correlation spectroscopy [14].

Experimental studies of rotational colloidal self-diffusion are based on techniques which

can distinguish different particle orientations. Methods which have been used for this pur-

pose are depolarized dynamic light scattering (DDLS) on optically anisotropic particles [15],

and nuclear magnetic resonance [16]. More recently developed techniques applicable to

a larger variety of systems include time-resolved phosphorescence anisotropy [17, 18] and

polarized FRAP [19, 20] measurements. The latter methods have been carried out us-

ing fluorophore-labeled colloidal particles. Most of the published experimental results deal

with self-diffusion properties of monodisperse colloidal systems. However, experimental and

theoretical work has been also performed on rotational diffusion in colloidal mixtures, in par-

ticular for binary systems where one component (the tracer) is very dilute [17, 18, 20, 21].

In addition, DDLS measurements of the rotational diffusion of tracer spheres in a poly-

meric solution have been used to infer viscoelastic properties from a frequency-dependent

generalized Stokes-Einstein-Debye (GSED) relation [22].

From a simulation methods viewpoint, short-time rotational self-diffusion in monodisperse

colloidal systems of non-permeable spheres with excluded volume interactions was studied,

e.g., using lattice-Boltzmann (LB) [23], Stokesian dynamics [24], and accelerated Stokesian

dynamics (ASD) simulations [7]. Moreover, virial expansion results of varying accuracy

have been derived for the rotational self-diffusion coefficient up to quadratic order in the

concentration [15, 25–28].

While there has been no theoretical work so far on rotational self-diffusion in concen-

trated suspensions of porous particles, other transport properties of porous particles have

been studied, including the high-frequency shear viscosity [29–32], and to first order in

concentration the mean sedimentation velocity [33].

In our earlier work on the short-time dynamics of concentrated suspensions of uniformly

porous particles, a broad spectrum of dynamic properties has been calculated, including the

hydrodynamic function [8, 34] and sedimentation coefficient [8], translational self-diffusion

coefficient [8, 34], and the high-frequency-limiting shear viscosity η∞ [35, 36]. These simula-
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tion studies were amended by the derivation of easy-to-use approximate analytic expressions

of good accuracy, notably a generalized Saito formula for the shear viscosity [36], and a spher-

ical annulus model approximation for η∞ [36], and to first order in concentration also for Dt

and Dr [37]. Additionally, precise values for the first-order virial coefficients of Dr and Dt

corresponding to two-body HIs have been obtained [37].

In all these studies on permeable particles, the solvent flow inside the spheres is described

by the Debye-Büche-Brinkman (DBB) equation [38, 39], and the particles are assumed

to interact directly by excluded volume (i.e., hard-sphere type) forces. Our simplifying

particle model is specified by two parameters only, namely the particle volume fraction

ϕ = (4π/3)na3, where n is the number concentration, and the ratio, x, of the particle

radius, a, to the hydrodynamic penetration depth, κ−1, inside a permeable sphere. Large

(low) values of x correspond to weakly (strongly) permeable particles. Typical values for

x in permeable-particle systems, such as core-shell particles, are in the range of x ∼ 30 or

larger [40]. While a specific intra-particle structure is ignored in the model, it is generic

in the sense that a more complex internal hydrodynamic structure can be approximately

accounted for in terms of a mean permeability. Porous-particle systems of current interest

include dendrimers [41–43], microgel particles [44–46], core-shell particles [40, 47–49], and

star-like polymers of lower functionality [50].

The present work complements our earlier analysis of the short-time dynamics in con-

centrated suspensions of uniformly permeable spheres by giving simulation results and a

theoretical analysis of the short-time rotational diffusion coefficient not considered so far

at non-dilute concentrations. On employing the multipole simulation method of a very

high accuracy [51] encoded in the hydromultipole program package [28], we calculate the

short-time rotational self-diffusion coefficient, Dr(x, ϕ), as a function of x and ϕ. Our results

cover the full range of porosities, with the volume fraction extending up to 0.45. In combina-

tion with recently obtained tabulated values for the first-order virial coefficients of Dr(x, ϕ)

and Dt(x, ϕ) [37], and precise hydromultipole simulation results for Dt(x, ϕ) obtained

earlier [8, 34], we show that both Dr(x, ϕ) and Dt(x, ϕ) can be scaled, in the whole range

of permeabilities and volume fractions, to the self-diffusion coefficients Dhs
r (ϕ) = Dr(∞, ϕ)

and Dhs
t (ϕ) = Dt(∞, ϕ) of non-permeable hard spheres with stick boundary conditions and

the same size. From these scaling relations, accurate analytic expressions for Dr(x, ϕ) and

Dt(x, ϕ) are obtained. We expect these expressions to be useful in the experimental data
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analysis of diffusion measurement on permeable particle systems. The present simulation

results for Dr(x, ϕ), and known results for η∞(x, ϕ), are used to show the violation of a

GSED relation between Dr(x, ϕ) and η∞(x, ϕ), amending our earlier study of similar GSE

relations in [35].

The paper is organized as follows: Sec. II provides the theoretical background on short-

time self-diffusion of permeable particles. Furthermore, it includes our simulation results for

rotational self-diffusion. The scaling relations allowing to map permeable to non-permeable

hard-sphere systems are discussed in Sec. III. In Sec. IV, we complete the scaling relations

by providing simple expressions for the scaling functions for non-permeable hard spheres.

We also discuss the special case of non-permeable hard spheres in comparison to earlier

simulations and experimental work. In Sec. V, we demonstrate the violation of the GSED

relation. In our conclusions in Sec. VI, we explicitly write convenient expressions forDr(x, ϕ)

and Dt(x, ϕ) which should prove useful in practical applications.

II. SHORT-TIME ROTATIONAL SELF-DIFFUSION: THEORY AND RESULTS

Like in our earlier work on the dynamics of permeable particle systems [8, 34–37], we

employ a model of uniformly permeable spheres of radius a, dispersed in a Newtonian fluid of

viscosity η0. The low-Reynolds number incompressible flow inside and outside the spheres is

described, respectively, by the Stokes [52, 53] and Debye-Bueche-Brinkman [38, 39] equations

η0∇2v(r)− η0κ
2χ(r) [v(r)− ui(r)]−∇p(r) = 0 . (3)

Here, v and p are the fluid velocity and pressure, respectively, and κ−1 is the hydrodynamic

penetration depth. The characteristic function, χ(r), is equal to one for the field point

r inside any of the spheres and zero outside. The skeleton of a particle i, centered at

ri, moves rigidly with the local velocity ui(r) = Ui + ωi × (r−Ri), determined by the

translational and rotational velocities Ui and ωi, respectively. The fluid velocity and stress

change continuously across a particle surface.

The short-time rotational self-diffusion coefficient of a quiescent, isotropic system is given

in frame-invariant notation by [21, 28]

Dr =
kBT

3

⟨ 1

N

N∑
i=1

Trµrr
ii (X)

⟩
, (4)
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where X = {r1, · · · , rN} is the configuration of N ≫ 1 sphere centers, and Tr denotes

the trace operation. The hydrodynamic mobility tensor, µrr
ii (X), linearly relates the torque

acting on a particle i to its rotational velocity, for zero forces and torques exerted on the

other particles. For the present model system, the average ⟨· · · ⟩ is taken over an equilibrium

distribution of non-overlapping spheres, consistent with the periodic boundary conditions

used in our simulations. Our numerical calculation of Dr(x, ϕ) makes use of Eq. (4).

The coefficient Dr is a function both of x and ϕ. At infinite dilution, Eq. (4) reduces to

[54, 55]

Dr
0(x) =

kBT

8πη0a3
[
1 +

3

x2
− 3 coth x

x

] . (5)

Note here that Dr
0(x) > Dr,hs

0 unless x = ∞.

We have calculated Dr(x, ϕ) to high precision using a hydrodynamic multipole method

corrected for lubrication [28, 51, 56, 57], and encoded in the hydromultipole program

package extended to permeable spheres. The hydrodynamic particle structure enters into

the hydromultipole method only through a single-particle friction operator, whose form

is known for a variety of particle models [54–56]. The details of the simulation method

are given elsewhere [8]. The values for Dr presented in the following have been determined

from equilibrium configuration averages over typically N = 256 particles in a periodically

replicated cubic simulation box, using 100 initial random configurations for each set of

parameters. This gives a statistical relative error of less than 0.001. In our multipole

expansion method used for the rotational mobility tensor in Eq. (4), the multipole order, L,

was truncated usually at L = 3. To gain high-precision data, extrapolations to L → 8 were

made, leading to an accuracy in Dr better than 1%. The calculated values for Dr(N) using

the periodic simulation box with N particles are not critically dependent on the system

size, since Dr(N = ∞) − Dr(N) scales with the particle number like 1/N . This system

size dependence is similar to that of the high-frequency viscosity, η∞(x, ϕ), of permeable

particles. The latter was calculated in earlier work [29, 36].

Table I lists our high-precision simulation results for Dr(x, ϕ), for volume fractions up to

ϕ = 0.45. Values of the inverse (reduced) penetration depth x are considered from a very

small value x ∼ 5, characteristic of highly permeable particles, up to x = ∞ characteristic

of dry particles with stick surface boundary conditions.
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TABLE I: Simulation results for the normalized short-time rotational self-diffusion coefficient

Dr(x, ϕ)/Dr
0(x).

ϕ \ x 5 10 20 30 50 100 ∞

0.05 0.995 0.987 0.980 0.977 0.973 0.970 0.967

0.15 0.983 0.958 0.934 0.922 0.911 0.901 0.888

0.25 0.968 0.925 0.881 0.860 0.839 0.820 0.796

0.35 0.951 0.886 0.820 0.788 0.757 0.729 0.690

0.45 0.932 0.842 0.753 0.711 0.669 0.629 0.576

III. SCALING SELF-DIFFUSION OF PERMEABLE TO NON-PERMEABLE

PARTICLES

From analyzing the numerical data for the rotational self-diffusion coefficient in Table I,

we have found an interesting scaling of permeable to non-permeable spheres of the same

size. In addition, we found that a similar scaling is valid for the translational self-diffusion

coefficient. Therefore, results for both quantities will be given in this section. We start from

a brief comparison of Dr(x, ϕ) to Dt(x, ϕ).

The simulation results for Dr(x, ϕ) from table I are depicted in the left panel of Fig. 1

using symbols. For comparison, the right panel of Fig. 1 shows the corresponding simulation

results for Dt(x, ϕ) taken from [8]. For permeable particles, the fluid is allowed to penetrate

so that the strength of the HIs is decreasing with increasing permeability, i.e., decreasing

x. This is the reason for the larger values of Dr and Dt at larger permeabilities. Our

results show that the effect of HIs on Dr is weaker than on Dt, i.e., for a given x and ϕ,

the reduction of the self-diffusion coefficient relative the infinite dilution value is smaller for

rotational diffusion.

The numerical results for Dr(x, ϕ) and Dt(x, ϕ) plotted in Fig. 1 have significantly differ-

ent slopes at small volume fractions ϕ. On the other hand, these slopes are well-reproduced

by the first-order virial coefficients, λr(x) and λt(x), defined by the following relations,

Dr(x, ϕ)

Dr
0(x)

= 1 + λr(x)ϕ+O(ϕ2) (6)

Dt(x, ϕ)

Dr
0(x)

= 1 + λt(x)ϕ+O(ϕ2) , (7)
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FIG. 1: Rotational (left) and translational (right) self-diffusion coefficients, Dr(x, ϕ)/Dr
0(x) and

Dt(x, ϕ)/Dt
0(x), as functions of ϕ, for values of x as indicated. Symbols: simulation results. Solid

lines: interpolated r.h.s. of Eqs. (13-14).

evaluated in Ref. [37] and listed in Table II. The single-particle rotational diffusion coeffi-

cient, Dr
0(x), has been already given in Eq. (5), and the translational one has the form given

in [38, 39],

Dt
0(x) =

kBT

6πη0a

(
1 +

1

x cothx− 1
+

3

2x2

)
. (8)

TABLE II: First-order virial terms, λr(x) and λt(x), of the rotational and translational self-diffusion

coefficients [37].

5 10 20 30 50 100 ∞

λr -0.097 -0.236 -0.376 -0.442 -0.505 -0.561 -0.631

λt -0.569 -1.060 -1.416 -1.550 -1.661 -1.746 -1.832

Therefore, the idea is to introduce the following scaling functions,

ur(x, ϕ) =

(
Dr(x, ϕ)

Dr
0(x)

− 1

)
1

λr(x)
, (9)

ut(x, ϕ) =

(
Dt(x, ϕ)

Dt
0(x)

− 1

)
1

λt(x)
. (10)

For all values of x ≥ 5, the functions ur(x, ϕ) and ut(x, ϕ) do practically not depend on x,

i.e. they are permeability-independent. Indeed, as shown in Fig. 2, the curves for ur and ut
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as functions of ϕ collapse on the corresponding curves for the non-permeable solid spheres,

i.e.

ur(x, ϕ) ≈ ur(∞, ϕ) , (11)

ut(x, ϕ) ≈ ur(∞, ϕ) , (12)

with a relative error less than 3% for x ≥ 10.
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FIG. 2: The functions ur(x, ϕ) and ut(x, ϕ) are practically independent of x. Symbols: simulation

results for the indicated values of x. Solid lines: spline fit interpolations of ur(∞, ϕ) and ut(∞, x).

Therefore, the short-time self-diffusion coefficients in suspensions of permeable particles

are well approximated by the following expressions,

Dr(x, ϕ)

Dr
0(x)

≈ 1 + λr(x)ur(∞, ϕ) , (13)

Dt(x, ϕ)

Dt
0(x)

≈ 1 + λt(x)ut(∞, ϕ) . (14)

In Fig. 1, the solid, continuous lines are not just mere fits to the simulation data, but

represent the expressions in Eqs. (13-14), i.e. the outcome of the interesting scaling behavior

of the short-time self-diffusion of permeable particles. The error made in using Eqs. (13 -14)

instead of the precise simulation values, is at most 1% for rotational and 3% for translational

self-diffusion. To complete the analysis, we need to specify the scaling functions for the non-

permeable solid spheres. This will be done in the next section.
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IV. SELF-DIFFUSION COEFFICIENTS OF NON-PERMEABLE SPHERES

We will now use the existing data for non-permeable hard spheres to construct simple

approximate expressions for the scaling functions ur(∞, ϕ) and ut(∞, ϕ).

We start with a comparison between our present simulation results forDhs
r (ϕ) = Dr(∞, ϕ)

and Dhs
t (ϕ) = Dt(∞, ϕ) for vanishing permeability, and a selection out of a large body of

published experimental (see, e.g.,[4, 6, 15, 16, 18]) and simulation (see, e.g., [7, 23, 24, 29, 58–

61]) data on impermeable hard spheres.

Related to this comparison, we note first that numerical results of varying precision

have been published for the first and second virial coefficients of the rotational [15, 25–27]

and translational [26, 27, 62] self-diffusion coefficients. High-precision second-order virial

expansion results,

Dhs
r

Dr,hs
0

= 1− 0.631ϕ− 0.726ϕ2 +O(ϕ3) , (15)

Dhs
t

Dt,hs
0

= 1− 1.8315ϕ− 0.219ϕ2 +O(ϕ3) , (16)

have been obtained by Cichocki et al. [28], using a lubrication correction for the three-body

HIs contributions.

Regarding rotational diffusion, Fig. 3(a) shows the comparison of our data with Lattice-

Boltzmann [23] and ASD [7] simulation results, and DDLS experimental data [15] for op-

tically anisotropic fluorinated polymer particles. The rotational diffusion coefficient as a

function of ϕ has a concave shape, different from that for Dt which is weakly convex. Our

simulation data for non-permeable particles agree well with the ASD result. The LB data

at large ϕ are somewhat smaller. The key message conveyed by Fig. 3(a) is that the second-

order virial result for Dhs
r (ϕ) in Eq. (15) describes the simulation and experimental data

remarkably well for all volume fractions up to the freezing transition value 0.49 [7, 23], in-

dicating that higher-order virial coefficients are small or mutually cancel out. Therefore,

for constructing a simple approximation for ur(∞, ϕ) from Eq. (9), it is sufficient to take

as Dr(∞, x) the 2nd-order virial expansion in Eq. (15). In this way, the rotational scaling

function is approximated by

ur(∞, ϕ) ≈ ϕ+ 1.151ϕ2 , (17)

with an accuracy of 1.5% or better relative to our simulation data.
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FIG. 3: (a) Rotational and (b) translational self-diffusion coefficients of non-permeable hard spheres

with stick boundary conditions, as functions of ϕ. Compared in (a) are our hydromultipole data

(labeled HYDRO) for Dhs
r /Dhs

0 with SD [7] and LB [23] simulation results, and DDLS experimental

data [15] for optically anisotropic particles. In (b), we compare the hydromultipole data for

Dhs
t (ϕ)/Dt,hs

0 with ASD simulation results [7], force multipole calculations by Ladd [58], and DLS

experimental data by Segre et al. [6]. Solid lines: 2nd-order virial expansion results, in (a) according

to Eq. (15), and in (b) according to Eq. (16).

In Fig. 3(b), we compare our simulation data for Dhs
t (ϕ)/Dt,hs

0 with ASD simulation [7]

and force multipole calculation results [58], and with DLS experimental data [6]. The figure

shows that the translational second-order virial expression in Eq. (16) for Dhs
t noticeably

underestimates the simulation and experimental data when ϕ is larger than 0.3.

For this reason, we need a more precise expression for Dt(∞, ϕ) than the 2nd-order virial

expansion in Eq. (16). We have found that our simulation data are approximated with

a 0.4% accuracy by the following expression for the scaling function ut(∞, ϕ), defined in

Eq. (10),

ut(∞, ϕ) ≈ ϕ+ 0.12ϕ2 − 0.65ϕ3 . (18)

The term ϕ + 0.12ϕ2 follows from the virial expansion in Eq. (16), and the coefficient

of the third order term, −0.65 ϕ3, has been obtained by fitting to the numerical data for

ut(∞, ϕ)− ϕ− 0.12ϕ2, in the range 0 ≤ ϕ ≤ 0.45.
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V. GENERALIZED STOKES-EINSTEIN-DEBYE RELATION

We proceed with the discussion of a generalized short-time GSED relation. Having ob-

tained in this paper precise numerical data for Dr(x, ϕ), and taking values of η∞(x, ϕ) tab-

ulated in [36], we are in the position to test the validity of the following short-time GSED

relation
Dr(x, ϕ)

Dr
0(x)

η∞(x, ϕ)

η0

?≈ 1 , (19)

between the rotational self-diffusion coefficient, and the high-frequency viscosity of perme-

able particles. The validity of generalized Stokes-Einstein relations such as the present one is

an important issue in microrheological studies where one tries to infer rheological properties

more easily from diffusion measurements. The GSED relation in Eq. (19) was shown before

to be violated for suspensions of non-permeable neutral and charged particles [18, 63]. Here,

we ask the same validity question for permeable particle systems.

In Fig. 4, the GSED relation is examined for different values of x. If valid, all curves

should collapse on a single horizontal line of unit height. One notices from the figure that

the GSED relation is significantly violated for x ≥ 30, and volume fractions ϕ > 0.15

where the particles are significantly correlated. Thus, a rotating particle experiences its

neighborhood not just as a structureless medium characterized by the viscosity η∞(x, ϕ).
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FIG. 4: The generalized Stokes-Einstein-Debye relation between Dr(x, ϕ) and high-frequency vis-

cosity η∞(x, ϕ) is not satisfied. Solid lines are interpolating spline fits to our simulation results

(symbols).
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The GSED relation for rotational diffusion is more strongly violated than its translational

counterpart. As shown in [35], (Dt/D
t
0) × (η∞/η0) increases practically linearly in ϕ, even

for non-permeable particles, whereas in Fig. 4 a pronounced non-linear increase is observed.

VI. CONCLUSIONS

Using the hydromultipole simulation method, the short-time rotational self-diffusion

coefficient, Dr(x, ϕ), of uniformly permeable spheres was calculated to high precision as a

function of permeability and volume fraction.

An interesting scaling relation was found between Dr(x, ϕ) and the corresponding coef-

ficient, Dr(∞, ϕ), of non-permeable, solid spheres of the same size, where the permeability

enters only through the first-order rotational virial coefficient. A similar scaling was found

for translational self-diffusion.

The combination of the scaling relations with accurate 2nd-order and 3rd-order concen-

tration expansion results in Eqs. (17-18) for Dr(∞, ϕ) and Dt(∞, ϕ), respectively, has led

us to the expressions

Dr(x, ϕ)

Dr
0(x)

≈ 1 + λr(x)ϕ (1 + 1.151ϕ) , (20)

Dt(x, ϕ)

Dt
0(x)

≈ 1 + λt(x)ϕ
(
1 + 0.12ϕ− 0.65ϕ2

)
, (21)

for the permeability-dependent self-diffusion coefficients. In combination with table II for

λr and λt, these are convenient expressions useful in diffusion measurement analysis of

permeable particle systems, and as input to theories of long-time dynamic properties. The

accuracy of these expressions is better than 1.5% for rotational and 3.5% for translational

self-diffusion, for the whole range of volume fractions ϕ ≤ 0.45 provided x ≥ 5. We expect the

expressions to be useful in the experimental analysis of self-diffusion, to gain a quick estimate

of the mean porosity in concentrated systems. Moreover, they can serve as short-time

inputs into theoretical methods of calculating frequency-dependent and long-time diffusion

properties, such as in mode-coupling and dynamic density functional theory methods.

The simulation results forDr(x, ϕ), and recent results for η∞(x, ϕ), were used to scrutinize

the validity of a generalized Stokes-Einstein-Debye relation in its dependence on permeabil-

ity. We found this relation to be significantly violated for non-dilute suspensions, unless

the permeability is unrealistically large. The GSED test for porous particles presented in

14



this paper complements earlier GSE performance tests [35] of different short-time diffusion

properties. Of all considered GSE relations, only the one for the cage diffusion coefficient

can claim a certain validity when applied to neutral porous particles [35]. However, also this

relation becomes invalid when the particles are significantly charged [7].

With the present paper on self-diffusion in combination with earlier simulation results for

other dynamic properties such as the hydrodynamic function and viscosity, and the develop-

ment of accurate analytic approximations for these properties [8, 35–37], we have obtained an

essentially complete description of the short-time dynamics of uniformly permeable particles

with no-overlap interactions.

Dispersions of spherical particles with more complex internal hydrodynamic structure,

such as core-shell particles, and different direct interactions, will be the subject of a future

study.

Acknowledgments

M.L.E.J. and E.W. were supported in part by the Polish Ministry of Science and Higher

Education grant N N501 156538. G.N. thanks M. Heinen for helpful discussions and the

Deutsche Forschungsgemeinschaft (SFB-TR6, project B2) for financial support. Numerical

simulations were done at NACAD-COPPE/UFRJ in Rio de Janeiro, Brazil, and at the

Academic Computer Center in Gdansk, Poland.

[1] P.N. Pusey, in Liquids, Freezing, and the Glass Transition, edited by J. P. Hansen, D. Levesque,

and J. Zinn-Justin, Elsevier, Amsterdam, (1991).
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[21] H. Zhang and G. Nägele, J. Chem. Phys. 117, 5908 (2002).

[22] E. Andablo-Reyes, P. Diaz-Leyva, and J.L. Arauz-Lara, Phys. Rev. Lett. 94, 106001 (2005).

[23] M.H.J. Hagen, D. Frenkel and C.P. Lowe, Physica A 272, 376 (1999).

[24] R.J. Phillips, J.F. Brady, and G. Bossis, Phys. Fluids 31, 3462 (1988).

[25] C. Urdaneta, D.M. Jones and M. Muthukumar, J. Chem. Phys. 91, 5127 (1989).

[26] H.J.H. Clercx and P.P.J.M. Schram, Physica A 174, 293 (1991).

[27] H.J.H. Clercx and P.P.J.M. Schram, J. Chem. Phys. 96, 3137 (1992).
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