483 research outputs found
Recommended from our members
Correlated analyses of D- and 15N-rich carbon grains from CR2 chondrite EET 92042
Extract from introduction: Insoluble organic matter (IOM) and matrix from primitive carbonaceous chondrites carry isotope enrichments (?D?20000', ?15N?3200�) that are comparable to those in interplanetary dust particles [1, this work]. Hence, primitive organics that formed in the protosolar cloud (PSC) – or maybe in the cold outer regions of the protoplanetary disk – survived accretion and planetary processing on the asteroids, the parent bodies of the chondrites
Recommended from our members
Correlated Microscale Isotope and Scanning Transmission X-Ray Analyses of Isotopically Anomalous Organic Matter from the CR2 Chondrite EET 92042
We discuss correlated examinations of organic matter from the CR2 chondrite EET 92042, using SIMS, STXM and other methods. We found a large, isotopically highly anomalous region of probable presolar origin that is C- and 13C-poor and 15N-rich
Boundedness of Pseudodifferential Operators on Banach Function Spaces
We show that if the Hardy-Littlewood maximal operator is bounded on a
separable Banach function space and on its associate space
, then a pseudodifferential operator
is bounded on whenever the symbol belongs to the
H\"ormander class with ,
or to the the Miyachi class
with ,
. This result is applied to the case of
variable Lebesgue spaces .Comment: To appear in a special volume of Operator Theory: Advances and
Applications dedicated to Ant\'onio Ferreira dos Santo
Recommended from our members
Secondary ion mass spectrometry and x-ray absorption near-edge structure spectroscopy of isotopically anomalous organic matter from CR1 chondrites GRO 95577
We located interstellar organics from a CR1 chondrite with NanoSIMS and analyzed FIB-extracted sections with XANES. D-rich material appears not associated with a functional group, whereas 15N-rich matter shows some affinity to nitrile functionality
The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase
The larger portion of the organic carbon in carbonaceous chondrites (CC) is present as a complex and heterogeneous macromolecular material that is insoluble in acids and most solvents (IOM). So far, it has been analyzed only as a whole by microscopy (TEM) and spectroscopy (IR, NMR, EPR), which have offered and overview of its chemical nature, bonding, and functional group composition. Chemical or pyrolytic decomposition has also been used in combination with GC-MS to identify individual compounds released by these processes. Their value in the recognition of the original IOM structure resides in the ability to properly interpret the decomposition pathways for any given process. We report here a preliminary study of IOM from the Murray meteorite that combines both the analytical approaches described above, under conditions that would realistically model the IOM hydrothermal exposure in the meteorite parent body. The aim is to document the possible release of water and solvent soluble organics, determine possible changes in NMR spectral features, and ascertain, by extension, the effect of this loss on the frame of the IOM residue. Additional information is included in the original extended abstract
Life-Detection Technologies for the Next Two Decades
Since its inception six decades ago, astrobiology has diversified immensely
to encompass several scientific questions including the origin and evolution of
Terran life, the organic chemical composition of extraterrestrial objects, and
the concept of habitability, among others. The detection of life beyond Earth
forms the main goal of astrobiology, and a significant one for space
exploration in general. This goal has galvanized and connected with other
critical areas of investigation such as the analysis of meteorites and early
Earth geological and biological systems, materials gathered by sample-return
space missions, laboratory and computer simulations of extraterrestrial and
early Earth environmental chemistry, astronomical remote sensing, and in-situ
space exploration missions. Lately, scattered efforts are being undertaken
towards the R&D of the novel and as-yet-space-unproven life-detection
technologies capable of obtaining unambiguous evidence of extraterrestrial
life, even if it is significantly different from Terran life. As the suite of
space-proven payloads improves in breadth and sensitivity, this is an apt time
to examine the progress and future of life-detection technologies.Comment: 6 pages, the white paper was submitted to and cited by the National
Academy of Sciences in support of the Astrobiology Science Strategy for the
Search for Life in the Univers
Expression Profiling of PBMC-based Diagnostic Gene Markers Isolated from Vasculitis Patients
Vasculitis (angiitis) is a systemic autoimmune disease that often causes fatal symptoms. We aimed to isolate cDNA markers that would be useful for diagnosing not only vasculitis but also other autoimmune diseases. For this purpose, we used stepwise subtractive hybridization and cDNA microarray analyses to comprehensively isolate the genes whose expressions are augmented in peripheral blood mononuclear cells (PBMCs) pooled from vasculitis patients. Subsequently, we used quantitative real-time polymerase chain reaction (qRT–PCR) to examine the mRNA levels of each candidate gene in individual patients. These analyses indicated that seven genes exhibit remarkably augmented expression in many vasculitis patients. Of these genes, we analyzed G0/G1 switch gene 2 (G0S2) further because G0S2 expression is also enhanced in the PBMCs of patients with systemic lupus erythematodes (SLE). We generated G0S2 transgenic mice that ubiquitously overexpress human G0S2. Although we did not observe any obvious vasculitis-related histopathologic findings in these mice, these mice are unhealthy as they produce only few offspring and showed elevated serum levels of two autoimmunity-related antibodies, anti-nuclear antibody, and anti-double strand DNA antibody. Thus, our large-scale gene profiling study may help finding sensitive and specific DNA markers for diagnosing autoimmune diseases including vasculitis and SLE
Recommended from our members
Overview of the results of the organics PET Study of the cometary samples returned from comet Wild 2 by the Stardust mission
This presenation will provide an overview of the efforts and results produced by the Organics Preliminary Examination Team during their studies of the samples returned from comet Wild 2 by the Stardust spacecraft
RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2
Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR–RASSF1A–LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers
- …