64,503 research outputs found

    Determinations of |V_ub| and |V_cb| from measurements of B -> X_u,c\ell\nu differential decay rates

    Full text link
    Methods are described in the framework of light-cone expansion which allow one to determine the Cabibbo-Kobayashi-Maskawa matrix elements |V_ub| and |V_cb| from measurements of the differential decay rates as a function of the scaling variables in the inclusive semileptonic decays of B mesons. By these model-independent methods the dominant hadronic uncertainties can be avoided and the B -> X_u\ell\nu decay can be very efficiently differentiated from the B -> X_c\ell\nu decay, which may lead to precise determinations of |V_ub| and |V_cb|.Comment: 11 pages, 2 figures, version as published in Mod. Phys. Lett. A, more discussion, references added, title chang

    Feedback-stabilization of an arbitrary pure state of a two-level atom

    Get PDF
    Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum state of the atom to a stochastically moving point on the Bloch sphere. Recently,Hofmann, Mahler, and Hess [Phys. Rev. A {\bf 57}, 4877 (1998)] showed that by making part of the coherent driving proportional to the homodyne photocurrent can stabilize the state to any point on the bottom half of the sphere. Here we reanalyze their proposal using the technique of stochastic master equations, allowing their results to be generalized in two ways. First, we show that any point on the upper or lower half, but not the equator, of the sphere may be stabilized. Second, we consider non-unit-efficiency detection, and quantify the effectiveness of the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.Comment: 9 pages, 7 figures, Physical Review

    Bayesian feedback versus Markovian feedback in a two-level atom

    Get PDF
    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. {\bf 70}, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty {\em et al.} [Phys. Rev. A {\bf 62}, 012105 (2000)]. Here we choose to call it, for brevity, {\em Bayesian feedback}. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtain without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections.Comment: 10 pages, including 3 figure

    Quantum Communication Through a Spin-Ring with Twisted Boundary Conditions

    Full text link
    We investigate quantum communication between the sites of a spin-ring with twisted boundary conditions. Such boundary conditions can be achieved by a flux through the ring. We find that a non-zero twist can improve communication through finite odd numbered rings and enable high fidelity multi-party quantum communication through spin rings (working near perfectly for rings of 5 and 7 spins). We show that in certain cases, the twist results in the complete blockage of quantum information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field.Comment: four pages two figure

    Magnification of spin Hall effect in bilayer electron gas

    Full text link
    Spin transport properties of a coupled bilayer electron gas with Rashba spin-orbit coupling are studied. The definition of the spin currents in each layer as well as the corresponding continuity-like equations in the bilayer system are given. The curves of the spin Hall conductivities obtained in each layer exhibit sharp cusps around a particular value of the tunnelling strength and the conductivities undergo sign changes across this point. Our investigation on the impurity effect manifests that an arbitrarily small concentration of nonmagnetic impurities does not suppress the spin Hall conductivity to zero in the bilayer system. Based on these features, an experimental scheme is suggested to detect a magnification of the spin Hall effect.Comment: Revtex 10 pages, 4 figures; largely extended versio

    The second phase transition in the pyrochlore oxide Cd2Re2O7

    Full text link
    Evidence for another phase transition at 120 K in the metallic pyrochlore oxide Cd2Re2O7, following the structural transition at 200 K and followed by the superconducting transition at 1.0 K, is given through resistivity, magnetoresistance, specific heat, and X-ray diffraction measurements. The results indicate unique successive structural and electronic transitions occurring in the pyrochlore compound, revealing an interesting interplay between the crystal and electronic structures on the itinerant electron system in the pyrochlore lattice
    • …
    corecore