1,941 research outputs found

    Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    Get PDF
    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization

    Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    Get PDF
    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer

    Searching for magnetic monopoles trapped in accelerator material at the Large Hadron Collider

    Full text link
    If produced in high energy particle collisions at the LHC, magnetic monopoles could stop in material surrounding the interaction points. Obsolete parts of the beam pipe near the CMS interaction region, which were exposed to the products of pp and heavy ion collisions, were analysed using a SQUID-based magnetometer. The purpose of this work is to quantify the performance of the magnetometer in the context of a monopole search using a small set of samples of accelerator material ahead of the 2013 shutdown.Comment: 11 page

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    Алгоритм обработки радиографических цифровых изображений сварных соединений на основе нейросетевого подхода

    Get PDF
    This paper details an integrated product process design model that represents process capabilities by a set of key indicators and allows for the design of products taking into account constraints set out by the process. The model is applied to Incremental sheet forming (ISF) processes and their variants. ISF processes have been developed over the past 20 years and have reached a state of development now allowing for a transition from scientific research to broader industrial application. ISF with its low part specific tooling represents a technology suitable for individualized production down to one-piece-flow. Hence, it might satisfy the growing demand for individualized products in the field of sheet metal production. However, an industrial use of ISF requires that general design rules are provided to designers to enable designs that are compatible with the capabilities of ISF. Today's product design typically is more suitable for stamping operations than for ISF whic h makes the fabrication of parts by ISF difficult and increases lead time and costs. Also, different variations of ISF processes exist that are based on different machines (industrial robots, CNC machines,...) and are characterized by different capabilities, e.g. in terms of accuracy. The objective of this work is the development of an integrated product process design model and its application to ISF. The capabilities of currently available ISF processes are determined and compared to the requirements of selected products from the automotive and aerospace industry

    Expected accuracy of tilt measurements on a novel hexapod-based Digital zenith camera system: A Monte-Carlo simulation study

    Get PDF
    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation.As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt must be corrected. Examples include electronic theodolites or total stations, gravity meters, and other hexapod-based telescopes

    8. Effect of iron supplementation and malaria prophylaxis in infants on Plasmodium falciparum genotypes and multiplicity of infection

    Get PDF
    During a randomized placebo-controlled trial of chemoprophylaxis against Plasmodium falciparum malaria and iron supplementation, in infants living under conditions of intense transmission, all samples of P. falciparum obtained from children aged 5 and 8 months were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis for the msp2 locus. One hundred and six blood samples were analysed for the number of concurrent infections (multiplicity), and the allelic family of each msp2 genotype was determined. Mean multiplicity of infection was, overall, 2·76 infections/child, and it was significantly reduced in infants receiving chemoprophylaxis. This finding might help to explain the rebound effect in morbidity observed after prophylaxis was ended. Iron supplementation did not affect multiplicity of infection. In infants receiving placebo only, or placebo and iron supplementation, a significant positive association was observed between the number of infections and parasite densities (Spearman's ϱ = 0·25, P − 0·047). This association was lost in the group receiving chemoprophylaxis alone, or in combination with iron. This study showed a significant association of FC27-like msp2 alleles with prospective risk of clinical malaria in children (relative risk = 1·487, P = 0·013). Such an association was also found for the present risk of clinical malaria in infants receiving prophylaxis (odds ratio = 3·84, P = 0·026), which might imply that chemoprophylaxis may impair the development of premunitio

    Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft

    Get PDF
    Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared to that at 0- degrees, as well as the isolated inlet configuration to highlight installation effects. Performance of the installed inlet fell below that of the isolated inlet at Mach numbers of 1.4 and greater. The installed inlet demonstrated adequate operability over the expected range of angles-of-attack and yaw, but did exhibit definite angle-ofattack and yaw limits at supersonic conditions. At each supersonic flight Mach number, performance parameters near zero yaw angle were relatively insensitive to yaw, but in general the yaw angle yielding best performance was non-zero and varied with angle-of-attack. Performance of the installed inlet is also presented as functions of angle-of-attack and yaw to highlight these effects. Distortion at the aerodynamic interface plane ranged between 10 and 25% at the inlet critical points over the range of flight Mach numbers tested and did not decrease significantly for the isolated inlet. Although these distortion levels would be considered high for operation with a turbine engine, the over-wing installation is likely not as significant a contributor as the low test Reynolds number. This is demonstrated by comparing CFD analysis of the isolated inlet at test scale with that at intermediate and full scales
    corecore