276 research outputs found

    Double Field Theory Formulation of Heterotic Strings

    Full text link
    We extend the recently constructed double field theory formulation of the low-energy theory of the closed bosonic string to the heterotic string. The action can be written in terms of a generalized metric that is a covariant tensor under O(D,D+n), where n denotes the number of gauge vectors, and n additional coordinates are introduced together with a covariant constraint that locally removes these new coordinates. For the abelian subsector, the action takes the same structural form as for the bosonic string, but based on the enlarged generalized metric, thereby featuring a global O(D,D+n) symmetry. After turning on non-abelian gauge couplings, this global symmetry is broken, but the action can still be written in a fully O(D,D+n) covariant fashion, in analogy to similar constructions in gauged supergravities.Comment: 28 pages, v2: minor changes, version published in JHE

    Gauged diffeomorphisms and hidden symmetries in Kaluza-Klein theories

    Get PDF
    We analyze the symmetries that are realized on the massive Kaluza-Klein modes in generic D-dimensional backgrounds with three non-compact directions. For this we construct the unbroken phase given by the decompactification limit, in which the higher Kaluza-Klein modes are massless. The latter admits an infinite-dimensional extension of the three-dimensional diffeomorphism group as local symmetry and, moreover, a current algebra associated to SL(D-2,R) together with the diffeomorphism algebra of the internal manifold as global symmetries. It is shown that the `broken phase' can be reconstructed by gauging a certain subgroup of the global symmetries. This deforms the three-dimensional diffeomorphisms to a gauged version, and it is shown that they can be governed by a Chern-Simons theory, which unifies the spin-2 modes with the Kaluza-Klein vectors. This provides a reformulation of D-dimensional Einstein gravity, in which the physical degrees of freedom are described by the scalars of a gauged non-linear sigma model based on SL(D-2,R)/SO(D-2), while the metric appears in a purely topological Chern-Simons form.Comment: 23 pages, minor changes, v3: published versio

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte

    Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions

    Full text link
    We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.Comment: 22 pages Latex; v2: typos corrected and references adde

    Effective Actions for Massive Kaluza-Klein States on AdS_3 x S^3 x S^3

    Full text link
    We construct the effective supergravity actions for the lowest massive Kaluza-Klein states on the supersymmetric background AdS_3 x S^3 x S^3. In particular, we describe the coupling of the supergravity multiplet to the lowest massive spin-3/2 multiplet which contains 256 physical degrees of freedom and includes the moduli of the theory. The effective theory is realized as the broken phase of a particular gauging of the maximal three-dimensional supergravity with gauge group SO(4) x SO(4). Its ground state breaks half of the supersymmetries leading to 8 massive gravitinos acquiring mass in a super Higgs effect. The holographic boundary theory realizes the large N=(4,4) superconformal symmetry.Comment: 31 pages, v2: minor change

    On Maximal Massive 3D Supergravity

    Get PDF
    We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric "general massive supergravity" and the maximally supersymmetric N = 8 "new massive supergravity". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level.Comment: 33 page

    Global aspects of double geometry

    Get PDF
    We consider the concept of a generalised manifold in the O(d,d) setting, i.e., in double geometry. The conjecture by Hohm and Zwiebach for the form of finite generalised diffeomorphisms is shown to hold. Transition functions on overlaps are defined. Triple overlaps are trivial concerning their action on coordinates, but non-trivial on fields, including the generalised metric. A generalised manifold is an ordinary manifold, but the generalised metric on the manifold carries a gerbe structure. We show how the abelian behaviour of the gerbe is embedded in the non-abelian T-duality group. We also comment on possibilities and difficulties in the U-duality setting.Comment: 20 pp. v3: refs. added, discussion added on limitations of formalis

    Towards an M5-Brane Model II:Metric String Structures

    Get PDF
    In this paper, we develop the mathematical formulation of metric string structures. These play a crucial role in the formulation of certain six-dimensional superconformal field theories and we believe that they also underlie potential future formulations of the (2,0)-theory. We show that the connections on non-abelian gerbes usually introduced in the literature are problematic in that they are locally gauge equivalent to connections on abelian gerbes. Connections on string structures form an exception and we introduce the general concept of an adjusted Weil algebra leading to potentially interacting connections on higher principal bundles. Considering a special case, we derive the metric extension of string structures and the corresponding adjusted Weil algebra. The latter lead to connections that were previously constructed by hand in the context of gauged supergravities. We also explain how the Leibniz algebras induced by an embedding tensor in gauged supergravities fit into our picture.Comment: v2: 70 pages, presentation improved, typos fixed, published versio
    corecore