226 research outputs found

    Gauged diffeomorphisms and hidden symmetries in Kaluza-Klein theories

    Get PDF
    We analyze the symmetries that are realized on the massive Kaluza-Klein modes in generic D-dimensional backgrounds with three non-compact directions. For this we construct the unbroken phase given by the decompactification limit, in which the higher Kaluza-Klein modes are massless. The latter admits an infinite-dimensional extension of the three-dimensional diffeomorphism group as local symmetry and, moreover, a current algebra associated to SL(D-2,R) together with the diffeomorphism algebra of the internal manifold as global symmetries. It is shown that the `broken phase' can be reconstructed by gauging a certain subgroup of the global symmetries. This deforms the three-dimensional diffeomorphisms to a gauged version, and it is shown that they can be governed by a Chern-Simons theory, which unifies the spin-2 modes with the Kaluza-Klein vectors. This provides a reformulation of D-dimensional Einstein gravity, in which the physical degrees of freedom are described by the scalars of a gauged non-linear sigma model based on SL(D-2,R)/SO(D-2), while the metric appears in a purely topological Chern-Simons form.Comment: 23 pages, minor changes, v3: published versio

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte

    Effective Actions for Massive Kaluza-Klein States on AdS_3 x S^3 x S^3

    Full text link
    We construct the effective supergravity actions for the lowest massive Kaluza-Klein states on the supersymmetric background AdS_3 x S^3 x S^3. In particular, we describe the coupling of the supergravity multiplet to the lowest massive spin-3/2 multiplet which contains 256 physical degrees of freedom and includes the moduli of the theory. The effective theory is realized as the broken phase of a particular gauging of the maximal three-dimensional supergravity with gauge group SO(4) x SO(4). Its ground state breaks half of the supersymmetries leading to 8 massive gravitinos acquiring mass in a super Higgs effect. The holographic boundary theory realizes the large N=(4,4) superconformal symmetry.Comment: 31 pages, v2: minor change

    Towards an M5-Brane Model II:Metric String Structures

    Get PDF
    In this paper, we develop the mathematical formulation of metric string structures. These play a crucial role in the formulation of certain six-dimensional superconformal field theories and we believe that they also underlie potential future formulations of the (2,0)-theory. We show that the connections on non-abelian gerbes usually introduced in the literature are problematic in that they are locally gauge equivalent to connections on abelian gerbes. Connections on string structures form an exception and we introduce the general concept of an adjusted Weil algebra leading to potentially interacting connections on higher principal bundles. Considering a special case, we derive the metric extension of string structures and the corresponding adjusted Weil algebra. The latter lead to connections that were previously constructed by hand in the context of gauged supergravities. We also explain how the Leibniz algebras induced by an embedding tensor in gauged supergravities fit into our picture.Comment: v2: 70 pages, presentation improved, typos fixed, published versio

    Non-linear parent action and dual gravity

    Full text link
    We give a reformulation of non-linear Einstein gravity, which contains the dual graviton together with the ordinary metric and a shift gauge field. The metric does not enter through a `kinetic' Einstein-Hilbert term, but via topological couplings, and so the theory does not lead to a doubling of degrees of freedom. The field equations take the form of first-order duality relations. We analyze the gauge symmetries and comment on their meaning with regard to the E11 proposal.Comment: 15 pages, v2: version to appear in Phys.Rev.D, v3: typos corrected, footnote added after equations (3.31)-(3.32) with a reference to [7], v4: note added in introduction stating the equivalence of the field equations following from our action to those given previously by West in [7
    • ā€¦
    corecore