276 research outputs found
Double Field Theory Formulation of Heterotic Strings
We extend the recently constructed double field theory formulation of the
low-energy theory of the closed bosonic string to the heterotic string. The
action can be written in terms of a generalized metric that is a covariant
tensor under O(D,D+n), where n denotes the number of gauge vectors, and n
additional coordinates are introduced together with a covariant constraint that
locally removes these new coordinates. For the abelian subsector, the action
takes the same structural form as for the bosonic string, but based on the
enlarged generalized metric, thereby featuring a global O(D,D+n) symmetry.
After turning on non-abelian gauge couplings, this global symmetry is broken,
but the action can still be written in a fully O(D,D+n) covariant fashion, in
analogy to similar constructions in gauged supergravities.Comment: 28 pages, v2: minor changes, version published in JHE
Gauged diffeomorphisms and hidden symmetries in Kaluza-Klein theories
We analyze the symmetries that are realized on the massive Kaluza-Klein modes
in generic D-dimensional backgrounds with three non-compact directions. For
this we construct the unbroken phase given by the decompactification limit, in
which the higher Kaluza-Klein modes are massless. The latter admits an
infinite-dimensional extension of the three-dimensional diffeomorphism group as
local symmetry and, moreover, a current algebra associated to SL(D-2,R)
together with the diffeomorphism algebra of the internal manifold as global
symmetries. It is shown that the `broken phase' can be reconstructed by gauging
a certain subgroup of the global symmetries. This deforms the three-dimensional
diffeomorphisms to a gauged version, and it is shown that they can be governed
by a Chern-Simons theory, which unifies the spin-2 modes with the Kaluza-Klein
vectors. This provides a reformulation of D-dimensional Einstein gravity, in
which the physical degrees of freedom are described by the scalars of a gauged
non-linear sigma model based on SL(D-2,R)/SO(D-2), while the metric appears in
a purely topological Chern-Simons form.Comment: 23 pages, minor changes, v3: published versio
The local symmetries of M-theory and their formulation in generalised geometry
In the doubled field theory approach to string theory, the T-duality group is
promoted to a manifest symmetry at the expense of replacing ordinary Riemannian
geometry with generalised geometry on a doubled space. The local symmetries are
then given by a generalised Lie derivative and its associated algebra. This
paper constructs an analogous structure for M-theory. A crucial by-product of
this is the derivation of the physical section condition for M-theory
formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions
We consider the reduction of the duality invariant approach to M-theory by a
U-duality group valued Scherk-Schwarz twist. The result is to produce
potentials for gauged supergravities that are normally associated with
non-geometric compactifications. The local symmetry reduces to gauge
transformations with the gaugings exactly matching those of the embedding
tensor approach to gauged supergravity. Importantly, this approach now includes
a nontrivial dependence of the fields on the extra coordinates of the extended
space.Comment: 22 pages Latex; v2: typos corrected and references adde
Effective Actions for Massive Kaluza-Klein States on AdS_3 x S^3 x S^3
We construct the effective supergravity actions for the lowest massive
Kaluza-Klein states on the supersymmetric background AdS_3 x S^3 x S^3. In
particular, we describe the coupling of the supergravity multiplet to the
lowest massive spin-3/2 multiplet which contains 256 physical degrees of
freedom and includes the moduli of the theory. The effective theory is realized
as the broken phase of a particular gauging of the maximal three-dimensional
supergravity with gauge group SO(4) x SO(4). Its ground state breaks half of
the supersymmetries leading to 8 massive gravitinos acquiring mass in a super
Higgs effect. The holographic boundary theory realizes the large N=(4,4)
superconformal symmetry.Comment: 31 pages, v2: minor change
On Maximal Massive 3D Supergravity
We construct, at the linearized level, the three-dimensional (3D) N = 4
supersymmetric "general massive supergravity" and the maximally supersymmetric
N = 8 "new massive supergravity". We also construct the maximally
supersymmetric linearized N = 7 topologically massive supergravity, although we
expect N = 6 to be maximal at the non-linear level.Comment: 33 page
Global aspects of double geometry
We consider the concept of a generalised manifold in the O(d,d) setting,
i.e., in double geometry. The conjecture by Hohm and Zwiebach for the form of
finite generalised diffeomorphisms is shown to hold. Transition functions on
overlaps are defined. Triple overlaps are trivial concerning their action on
coordinates, but non-trivial on fields, including the generalised metric. A
generalised manifold is an ordinary manifold, but the generalised metric on the
manifold carries a gerbe structure. We show how the abelian behaviour of the
gerbe is embedded in the non-abelian T-duality group. We also comment on
possibilities and difficulties in the U-duality setting.Comment: 20 pp. v3: refs. added, discussion added on limitations of formalis
Towards an M5-Brane Model II:Metric String Structures
In this paper, we develop the mathematical formulation of metric string
structures. These play a crucial role in the formulation of certain
six-dimensional superconformal field theories and we believe that they also
underlie potential future formulations of the (2,0)-theory. We show that the
connections on non-abelian gerbes usually introduced in the literature are
problematic in that they are locally gauge equivalent to connections on abelian
gerbes. Connections on string structures form an exception and we introduce the
general concept of an adjusted Weil algebra leading to potentially interacting
connections on higher principal bundles. Considering a special case, we derive
the metric extension of string structures and the corresponding adjusted Weil
algebra. The latter lead to connections that were previously constructed by
hand in the context of gauged supergravities. We also explain how the Leibniz
algebras induced by an embedding tensor in gauged supergravities fit into our
picture.Comment: v2: 70 pages, presentation improved, typos fixed, published versio
- …