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Towards an M5-Brane Model II: Metric String Structures

Christian Sämann* and Lennart Schmidt

In this paper, we develop the mathematical formulation of metric string structures. These play a crucial role in the
formulation of certain six-dimensional superconformal field theories and we believe that they also underlie potential
future formulations of the (2,0)-theory. We show that the connections on non-abelian gerbes usually introduced in the
literature are problematic in that they are locally gauge equivalent to connections on abelian gerbes. Connections on
string structures form an exception and we introduce the general concept of an adjusted Weil algebra leading to
potentially interacting connections on higher principal bundles. Considering a special case, we derive the metric
extension of string structures and the corresponding adjusted Weil algebra. The latter lead to connections that were
previously constructed by hand in the context of gauged supergravities. We also explain how the Leibniz algebras
induced by an embedding tensor in gauged supergravities fit into our picture.

1. Introduction and Results

1.1. Overview

Our understanding of M-theory would be vastly improved by a clean picture of the effective dynamics of stacks of multiple M5-
branes. These dynamics are governed by the so-called (2,0)-theory, a six-dimensional superconformal field theory, whose existence
was postulated over 20 years ago.[1] Attempts at constructing a classical Lagrangian of this theory have so far failed, and it is believed
that such a Lagrangian does not exist, see e.g. [2]. On closer inspection, however, many of the arguments against its existence are not
conclusive[3] and there may still be hope if we can identify the correct mathematical framework.
The (2,0)-theory involves a 2-form potential and deforming the free abelian theory to an interacting one is already a challenge. As

proved in [4, 5], there is no continuous such deformation. But this may be too much to ask; the Lagrangian may be of Chern–Simons
type and therefore demand for a discrete coupling constant. This is the case in the M2-brane models and higher Chern–Simons terms
indeed are present in the = (1, 0)-supersymmetric model presented in [3].
Mathematically, the 2-form potential arising in the description of a single M5-brane is a connection on a gerbe, a higher or categori-

fied notion of an abelian principal bundle. It is therefore reasonable to turn towards connections on the non-abelian generalizations
of gerbes introduced in the literature.[6,7] These are given in terms of local 1- and 2-forms, where the additional 1-forms are required
to circumvent the usual Eckmann–Hilton type argument that higher-dimensional parallel transport has to be abelian, cf. [8, 9].
At an abstract level, such connections allow for an elegant construction of 6d superconformal field equations via a higher-

dimensional Penrose–Ward transform.[10–13] Looking at concrete examples, however, suggests that the solutions of these equations
are not particularly interesting. Similarly, direct constructions of a Lagrangian involving connections on non-abelian gerbes led to
negative results, see e.g. [14].
As we show in Section 4.5, the connections defined in [6, 7] are locally gauge-equivalent to connections on abelian gerbes.While they

are suitable for higher versions of Chern–Simons theory, they necessarily fail in the description of non-abelian field theories that may
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contain locally non-vanishing 2-form curvatures. This is, in fact, a rather general feature of connections on higher principal bundles.
Higher gauge algebras are modeled by L∞-algebras, and each L∞-algebra comes with its own homotopy Maurer–Cartan theory, a
generalization of Chern–Simons theory. For every L∞-algebra, we thus obtain gauge potentials, curvatures, gauge transformations and
Bianchi identities; that is, a full set of kinematical data for a (higher) gauge theory. This straightforward categorification of connections
leads precisely to kinematical data which is suitable for higher Chern–Simons theories, but fails for the purposes of non-topological
higher gauge theories.
For certain L∞-algebras, however, there is a choice that one can make in the definition of the kinematical data, which allows for

connections on non-abelian gerbes which are not gauge equivalent to connections on abelian gerbes. One class of such L∞-algebras
are the string Lie 2-algebras, higher analogues of the Lie algebras 𝔰𝔭𝔦𝔫(n). These are particularly interesting since their appearance
in the description of the (2,0)-theory is expected for a number of reasons.[15] Furthermore, the string group 𝖲𝗍𝗋𝗂𝗇𝗀(3) is a categorified
version of 𝖲𝗉𝗂𝗇(3) ≅ 𝖲𝖴(2),[16] the simplest, interesting non-abelian Lie group. Just as 𝖲𝖴(2) is the total space of the Hopf fibration
and intimately linked to monopoles, 𝖲𝗍𝗋𝗂𝗇𝗀(3) underlies a categorified Hopf fibration linked to the categorified monopoles known as
self-dual strings, cf. [16].
In this paper, we derive in detail the local connection data, the appropriate notion of curvature, the gauge transformations as well as

the Bianchi identities for two models of the string Lie 2-algebra, allowing for an interpolation to general string Lie 2-algebra models.
We also develop the metric extensions which are required for an action principle, and point out the relation of the resulting local
connection data with the higher form curvatures obtained in the tensor hierarchy of gauged supergravities.

1.2. The Problem with Non-Abelian Connections

A definition of connections that allows for a generalization to L∞-algebras
[17] was given long ago by Henri Cartan.[18,19] In this ap-

proach, the dichotomy of Lie algebras and differential forms, the two basic ingredients in the local definition of connections, is
overcome by moving from a Lie or L∞-algebra 𝔤 to its dual differential graded algebra (dga), known as the Chevalley–Eilenberg algebra
𝖢𝖤(𝔤). Morphisms between 𝖢𝖤(𝔤) and the dga of differential forms (Ω∙(U), d) on a contractible patch U of some manifold encode
flat connections on U. Non-flat connections are obtained if one replaces 𝔤 with the corresponding L∞-algebra of inner derivations,
𝗂𝗇𝗇(𝔤), whose Chevalley–Eilenberg algebra is known as theWeil algebra𝖶(𝔤) of 𝔤. To define global 𝔤-connection objects, one imposes
constraints on the morphisms from𝖶(𝔤) to Ω∙(U). In particular, the morphism has to map a particular differential graded subalge-
bra of𝖶(𝔤), the invariant polynomials 𝗂𝗇𝗏(𝔤) of 𝔤, to global objects and the images of a specific subset, that is, the reduced invariant
polynomials, will form the topological invariants.
The invariant polynomials now sit in a complex,

0 ←← 𝖢𝖤(𝔤) ←← 𝖶(𝔤)←← 𝗂𝗇𝗏(𝔤) ←← 0, (1.1)

which already exhibits the problems arising in the straightforward categorification of connections based on L∞-algebras. Recall that
the appropriate notion of isomorphism for L∞-algebra is that of a quasi-isomorphism and for the definitions of the Weil algebra and
the invariant polynomials to be meaningful, they have to be compatible with these. That is, a quasi-isomorphism 𝜙 : 𝔤→ �̃� has to
induce a chain of (dual) quasi-isomorphisms,

0 𝖢𝖤(𝔤) 𝖶(𝔤) 𝗂𝗇𝗏(𝔤) 0

0 𝖢𝖤(�̃�) 𝖶(�̃�) 𝗂𝗇𝗏(�̃�) 0

≊ ≊ ≊ (1.2)

While this is always true for Lie algebras, it fails to hold for general L∞-algebras, where the quasi-isomorphism between the invariant
polynomials fails to exist in general. The conclusion of [17] was that the Weil algebra should be deformed by a topological invariant.
This, however, is not the only issue with higher connections: gauge transformations, in general, close only up to an equation of

motion, which is known as the fake flatness condition, a particular restriction on the curvature of higher connections.
Physicists would say the BRST complex is open, and we have to lift to the BV complex, where the required equations of motion are

imposed, cf. the discussion in [20]. The problem with fake flatness, however, is that this equation effectively renders the higher con-
nections abelian, which we prove in Section 4.5. As a consequence, it is virtually impossible to write down gauge-invariant equations
of motion for interacting field theories.
The requirement that all fake curvature forms need to vanish has also been observed in the finite description of connections in

terms of parallel transport functors.[21,22] Here it was found that a consistent parallel transport of strings is only invariant under surface
reparametrizations if the fake curvature condition is met.
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1.3. String Structures as an Exception

For particular L∞-algebras, such as the string Lie 2-algebras, however, the definition of the Weil algebra can be modified,[17] guaran-
teeing the expected compatibility of the complex (1.1) with (dual) quasi-isomorphisms. The dga-morphisms to differential forms then
yield the connections on higher generalizations of spin structures known as string structures,[23,24] see Section 5.2. These were first
discovered when trying to couple gauge potential 1-forms to the Kalb–Ramond B-field in supergravity.[25,26]

The discussion of the string Lie 2-algebra in [17], however, is incomplete for our purposes. First, string Lie 2-algebras can be
modeled by various representatives in their quasi-isomorphism classes. The explicit formulas for string connections in [17] as well as
the classical formulas of [25, 26] are given only forminimal or skeletal models. For these, the underlying graded vector space is minimal
but the Jacobiator, which encodes the failure of the binary product to preserve the Jacobi identity, is non-trivial. As a consequence, these
models are hard to integrate1, and any concepts involving finite transformations, such as the transition functions of an underlying
principal 2-bundles, become difficult to work with. A consistency requirement for eventual higher gauge theories is that they are
agnostic about which representative of the quasi-isomorphism class of an L∞-algebra is used in their definition. We thus need to
extend the discussion to at least the other extreme, that is, the case of strict models of the string Lie-algebras, in which the Jacobiator
is trivial.
Second, the graded vector spaces underlying string Lie 2-algebra models do not admit a symplectic structure, the necessary ingre-

dient in defining a cyclic structure, the correct notion of an inner product for L∞-algebras. This is a severe gap if one wants to define
natural action functionals for higher gauge theories with gauge algebra the string Lie 2-algebra.2 A solution to this problem is to use a
procedure similar to introducing antifields in the BV formalism and to essentially double the relevant graded vector space by applying
a degree-shifted cotangent functor.[3,16] This leads to metric string structures which arise naturally in 6d = (1, 0) supersymmetric
field theories,[3,16] and we believe these to be relevant to a potential future construction of a Lagrangian for the (2,0)-theory. The full
development of these metric string structures, i.e. the explicit derivation of the form of the connections and their curvature, their
gauge transformations and the Bianchi identities, for general string Lie 2-algebra models is the main goal of this paper.

1.4. Results

In this paper, we try to be mostly self-contained; we intend to establish notation and conventions, carefully presenting our motivation,
and providing relevant examples. The manuscript is rather long, and we therefore summarize our results in the following.

◦ Theorem 4.1 states that two gauge theories over the same contractible manifold are equivalent if and only if their gauge L∞-algebras
are quasi-isomorphic.

◦ Definition 4.2 formulates the concept of adjusted Weil algebras, which lead to higher connections whose gauge transformations
close without imposing any further conditions such as fake flatness. That is, their BRST complex is closed.

◦ The relevance of this definition is underlined by Theorem 4.3, which states that higher fake-flat connections (i.e. the connections
usually found in the literature) are always gauge equivalent to abelian ones. This important statement is not particularly deep, but
to the best of our knowledge, it has not been stated anywhere else so far in the literature.

◦ Our main result are formulas (5.34) and (5.35), which give the curvatures, gauge transformations and Bianchi identities for the
skeletal and the loop model of metric string structures; formulas for other models follow from combining these. As stated above,
we believe that these formulas are crucial in the potential future construction of an action for the (2,0)-theory.

◦ In Section 6.1, we compare our formulas for curvatures to those derived from tensor hierarchies. Our formulas fill in some gaps
in the definition of the latter curvatures and show that some modifications should be made.

◦ An important result in this context is presented in Section 6.2, where we show that the structure encoded in the embedding tensor
of supergravity is that of a weak Lie 2-algebra, fromwhich recently given interpretations in terms of Leibniz algebras directly follow.

Minor results, which we did not find in the literature, but which we found to be relevant to the general discussion:

◦ Theorem 3.3 states that quasi-isomorphisms of L∞-algebras are compatible with both definitions of invariant polynomials of L∞-
algebras.

◦ In Section 4.2, we explain how the BRST complex of a higher gauge theory is rapidly derived from a generalisation of the AKSZ-
formalism. This is very helpful in the computation of adjusted higher connections.

◦ The formulas for compositions of L∞-algebra 2-morphisms and quasi-isomorphisms in the dga-picture are worked out in ap-
pendix A.

1 While there is an abstract prescription for integrating L∞-algebras,
[27] it is fair to say that concrete computations are hard, even for the simple

example of the String Lie 2-group. For example, the string group model presented in [28], which integrates the skeletal model, contains essential
structures which are only proven to exist, but not given explicitly.

2 See however [29] for an alternative way of defining an action functional for higher connections ‘by hand’, without such a cyclic structure.
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2. L∞-Algebras and Associated Differential Graded Algebras

In this section, we review basic algebraic structures underlying the construction of (higher) gauge theories. We introduce L∞-algebras
and their Chevalley–Eilenberg description in terms of a differential graded commutative3 algebra (dga). We also introduce the asso-
ciated Weil and free algebras. Finally, we review how quasi-isomorphisms, which form the relevant type of isomorphisms for L∞-
algebras, are described in this picture.4

2.1. Chevalley–Eilenberg Algebra of an L∞-Algebra

A natural and convenient categorification of the notion of a Lie algebra is given by what are called strong homotopy Lie algebras, or
L∞-algebras for short.

Definition 2.1. An L∞-algebra 𝔤 consists of a ℤ-graded vector space 𝔤 =
⨁

k∈ℤ 𝔤k together with a set of totally antisymmetric, multilinear
maps or higher products 𝜇i : ∧i𝔤 → 𝔤, i ∈ ℕ+, of degree 2 − i, which satisfy the higher or homotopy Jacobi identities∑
i+j=n

∑
𝜎∈Si|j

𝜒(𝜎; a1,… , an)(−1)j𝜇j+1(𝜇i(a𝜎(1),… , a𝜎(i)), a𝜎(i+1),… , a𝜎(n)) = 0 (2.1)

for all n ∈ ℕ+ and a1,… , an ∈ 𝔤, where the second sum runs over all (i, j)-unshuffles 𝜎 ∈ Si|j. An n-term L∞-algebra, or Lie n-algebra
5, is

an L∞-algebra that is concentrated (i.e. non-trivial only) in degrees −n + 1,… , 0. The trivial L∞-algebra is the L∞-algebra 𝔤 =
⨁

k∈ℤ 𝔤k with
𝔤k = {0}.

Here, an unshuffle 𝜎 ∈ Si|j is a permutation whose image consists of ordered tuples (𝜎(1),… , 𝜎(i)) and (𝜎(i + 1),… , 𝜎(n)). Moreover,
𝜒(𝜎; a1,… , an) denotes the graded antisymmetric Koszul sign defined by the graded antisymmetrized products

a1… an = 𝜒(𝜎; a1,… , an)a𝜎(1) … a𝜎(n), (2.2)

where any transposition involving an even element acquires a minus sign.
In the categorification of a Lie algebra to a Lie 2-algebra, we relax the Jacobi identity to hold up to a natural transformation. This is

evident in the lowest few homotopy Jacobi relations, i.e.

0 = 𝜇1(𝜇1(a1)),

0 = 𝜇1(𝜇2(a1, a2)) − 𝜇2(𝜇1(a1), a2) + (−1)|a1||a2|𝜇2(𝜇1(a2), a1),

0 = 𝜇1(𝜇3(a1, a2, a3)) − 𝜇2(𝜇2(a1, a2), a3) + (−1)|a2||a3|𝜇2(𝜇2(a1, a3), a2) − (−1)|a1|(|a2|+|a3|)𝜇2(𝜇2(a2, a3), a1)

− (−1)|a1||a2|𝜇3(𝜇1(a2), a1, a3) + 𝜇3(𝜇1(a1), a2, a3) + (−1)(|a1|+|a2|)|a3|𝜇3(𝜇1(a3), a1, a2),

(2.3)

where ai ∈ 𝔤. These relations state that 𝜇1 is a graded differential compatible with 𝜇2, and 𝜇2 is a generalization of a Lie bracket with
the violation of the Jacobi identity controlled by 𝜇3.
There is an alternative and elegant way of describing an L∞-algebra 𝔤 and its higher Jacobi relations in terms of a coalgebra and

coderivations,[31] cf. also [32]. To see this, consider the grade-shifted vector space 𝔤[1], where the square bracket refers to a degree shift
of all elements of 𝔤 by −1 and, correspondingly, of all coordinate functions by +1, cf. [20]. This degree shift induces a shift of the
degree of the maps 𝜇i from 2 − i to 1 and allows to define a degree 1 coderivation

 : ⊙∙𝔤[1] → ⊙∙𝔤[1], (2.4)

which acts on the graded symmetric coalgebra ⊙∙𝔤[1] generated by 𝔤[1].
More explicitly, ⊙∙𝔤[1] is spanned by graded symmetric elements a1 ⊙ ⋯ ⊙ an and is equipped with the coproduct

Δ(a1 ⊙ ⋯ ⊙ an) =
∑
i+j=n

∑
𝜎∈Si|j

𝜖(𝜎; a1,… , an)(a𝜎(1) ⊙ ⋯ ⊙ a𝜎(i)) ⊗ (a𝜎(i+1) ⊙ ⋯ ⊙ a𝜎(n)), (2.5)

3 All our differential graded algebras will be commutative, and we shall mostly drop this adjective from here on.
4 Let us stress from the beginning that the nomenclature, the conventions and the notation in this paper differ to some degree from our previous
papers.[3,15,16] We hope that our new choice is more consistent, easier to work with and more future proof.

5 Strictly speaking, a Lie n-algebra is a (n − 1)-fold categorification of a Lie algebra, but a restriction of the general categorification is categorically
equivalent to n-term L∞-algebras. For the details in the case n = 2, see [30]. We therefore use the terms interchangeably. A general categorification
will be called a weak Lie n-algebra.
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where Si|j again denotes the set of (i, j)-unshuffles and 𝜖 is now the graded symmetric Koszul sign, which is related to the graded
antisymmetric Koszul sign via

𝜖(𝜎; a1,… , an) = sgn(𝜎)𝜒(𝜎; a1,… , an). (2.6)

A coderivation  is given by a linear map  : ⊙∙𝔤[1] → ⊙∙𝔤[1] which satisfies the co-Leibniz rule

Δ ◦ = ( ⊗ id + id ⊗ ) ◦Δ. (2.7)

We note that the higher products 𝜇i induce maps from ⊙i𝔤[1] → 𝔤[1], which can be extended to coderivations i. The sum of all
these codifferentials6 combine into a coderivation  encoding the L∞-algebra 𝔤, where the higher Jacobi identities correspond to the
coderivation squaring to zero, i.e. 2 = 0.
The third way of describing L∞-algebras, which is the important one for this paper, is the dualization of the above coalgebra de-

scription. In the case of ordinary Lie algebras, this yields what is known as the Chevalley–Eilenberg algebra of a Lie algebra.

Definition 2.2. The Chevalley–Eilenberg algebra 𝖢𝖤(𝔤) of an L∞-algebra 𝔤 encoded in a codifferential is the differential graded commutative
algebra

𝖢𝖤(𝔤) := (⊙∙(𝔤[1]∗), Q ), (2.8)

where Q = ∗ is the homological vector field, i.e. a vector field on 𝔤[1] of degree 1 satisfying Q2 = 0, which acts as a differential on ⊙∙(𝔤[1]∗).
We call the graded vector space 𝔤[1] together with Q the differential graded (dg)-manifold corresponding to the L∞-algebra 𝔤.

Recall that a dg-manifold is a graded manifold with a differential on the algebra of smooth functions. These are often called Q-
manifolds in the literature due to the homological vector field Q inducing the differential. Note that L∞-algebras correspond to dg-
manifolds with a vector spaces (which is often trivial) in degree 0. A general dg-manifold corresponds to an L∞-algebroid, and each
L∞-algebroid also comes with a Chevalley–Eilenberg algebra. An important example is the grade-shifted tangent bundle T [1]M of
a manifold M, where the Chevalley–Eilenberg algebra, i.e. the algebra of smooth functions on T [1]M, can be identified with the
differential forms onM and the differential Q plays the role of the de Rham differential.
Note that we are only interested in L∞-algebras whose graded vector spaces are simple enough (e.g. finite-dimensional) to allow for

a linear dual.
As a first example, consider a finite-dimensional Lie algebra 𝔤. Then 𝔤[1] comes with coordinate functions t𝛼 (with respect to some

basis) with degree |t𝛼| = 1 and the homological vector field is of the form Qt𝛼 = − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 . The condition Q2 = 0 is equivalent to the

f 𝛼
𝛽𝛾
being the structure constants of a Lie algebra.
As a second example, consider a Lie 2-algebra (or 2-term L∞-algebra) 𝔤 = 𝔤−1 ⊕ 𝔤0. Let (t𝛼 , ra) be the generators of 𝔤[1]∗ with degrees 1

and 2. A general homological vector field Q acts on the generators of 𝖢𝖤(𝔤) according to

Q : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 − f 𝛼

a r
a, ra → −f a

𝛼bt
𝛼rb + 1

3!
f a
𝛼𝛽𝛾

t𝛼t𝛽 t𝛾 , (2.9)

where the structure constants f 𝛼
a , f

𝛼
𝛽𝛾
, f a

𝛼b, f
a

𝛼𝛽𝛾
∈ ℝ satisfy relations corresponding to (2.3) or, equivalently, to Q2 = 0.

To reconstruct the higher products 𝜇i from Q in the case of a general L∞-algebra 𝔤, we introduce the tensor product 𝜉 = zA ⊗ 𝜏A,
where the zA are the coordinate functions on 𝔤[1], while the 𝜏A are the corresponding basis vectors in 𝔤, thus |𝜉| = 1. We then have
the formula

Q𝜉 = −�̂�1(𝜉) −
1
2
�̂�2(𝜉, 𝜉) −

1
3!

�̂�3(𝜉, 𝜉, 𝜉) −… , (2.10)

where �̂�i are the higher products 𝜇i on 𝔤, extended to the L∞-algebra ⊙∙(𝔤[1]∗) ⊗ 𝔤, see [20] for all the details of this construction. The
ordinary products are obtained using

�̂�i(z
A1 ⊗ 𝜏B1 ,… , zAi ⊗ 𝜏Bi ) = ±zA1 … zAi ⊗ 𝜇i(𝜏B1 ,… , 𝜏Bi ), (2.11)

where the sign ± is the combination of all Koszul signs arising from commuting coordinate functions zA past basis vectors 𝜏B and
pulling coordinate functions zA out of the higher product 𝜇i of degree 2 − i.
An immediate advantage of the dga-perspective on L∞-algebras is that the appropriate notion of morphism is immediately clear:

Definition 2.3. A morphism of L∞-algebras 𝜙 : 𝔤 → �̃� is (the dual of) a morphism of differential graded algebras between the corresponding
Chevalley–Eilenberg algebras 𝖢𝖤(𝔤) and 𝖢𝖤(�̃�),

Φ : 𝖢𝖤(𝔤)→ 𝖢𝖤(�̃�). (2.12)

In particular, Φ is of degree 0 and respects the differential, i.e. Φ ◦Q = Q̃ ◦Φ. If Φ is invertible, we call 𝜙 an isomorphism of L∞-algebras.

6 We insert some additional signs for convenience.
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In the dual picture, this translates to a collection of totally antisymmetric, multilinear maps 𝜙i : ∧i𝔤 → �̃� of degree 1 − i satisfying∑
j+k=i

∑
𝜎∈S(j|i)(−1)

k𝜒(𝜎; a1,… , ai)𝜙k+1(𝜇j(a𝜎(1),… , a𝜎(j)), a𝜎(j+1),… , a𝜎(i))

=
i∑

j=1

1
j!

∑
k1+⋯+kj=i

∑
𝜎∈Sh(k1 ,…,kj−1;i)

𝜒(𝜎; a1,… , ai)𝜁 (𝜎; a1,… , ai)𝜇
′
j (𝜙k1

(a𝜎(1),… , a𝜎(k1)
),… ,𝜙kj

(a𝜎(k1+⋯+kj−1+1),… , a𝜎(i))) (2.13a)

with the sign 𝜁 (𝜎; a1,… , ai) given by

𝜁 (𝜎; a1,… , ai) := (−1)
∑
1≤m<n≤j kmkn+

∑j−1
m=1 km(j−m)+

∑j
m=2(1−km)

∑k1+⋯+km−1
k=1 |a𝜎(k)|. (2.13b)

For example, a morphism of 2-term L∞-algebras 𝜙 : 𝔤 → �̃� consists of maps 𝜙1 : 𝔤 → �̃� and 𝜙2 : 𝔤 ∧ 𝔤 → �̃� of degrees 0 and −1,
respectively. The higher products on 𝔤 and �̃� are then related by the following formulas:

0 = 𝜙1(𝜇1(v1)) − 𝜇′
1(𝜙1(v1)),

0 = 𝜙1(𝜇2(w1, w2)) − 𝜇′
1(𝜙2(w1, w2)) − 𝜇′

2(𝜙1(w1),𝜙1(w2)),

0 = 𝜙1(𝜇2(w1, v1)) + 𝜙2(𝜇1(v1), w1) − 𝜇′
2(𝜙1(w1),𝜙1(v1)),

0 = 𝜙1(𝜇3(w1, w2, w3)) − 𝜙2(𝜇2(w1, w2), w3) + 𝜙2(𝜇2(w1, w3), w2) − 𝜙2(𝜇2(w2, w3), w1) − 𝜇′
3(𝜙1(w1),𝜙1(w2),𝜙1(w3))

+ 𝜇′
2(𝜙1(w1),𝜙2(w2, w3)) − 𝜇′

2(𝜙1(w2),𝜙2(w1, w3)) + 𝜇′
2(𝜙1(w3),𝜙2(w1, w2)),

(2.14)

where wi and vi denote elements of 𝔤 of degrees 0 and −1, respectively.
We note that a morphism of L∞-algebras is invertible and thus an isomorphism of L∞-algebras if and only if 𝜙1 is invertible. This

is very clear in the above explicit formulas (2.14) for a Lie 2-algebra morphism. Note also that an L∞-algebra isomorphism preserves
the dimensions of the graded subspaces 𝔤k of its source L∞-algebra 𝔤 = ⊕k∈ℤ𝔤k. In most cases, this notion of isomorphism is too
restrictive, and we shall return to this point in Section 2.3.
Formore details on the three descriptions of L∞-algebras in terms of higher products, differential graded coalgebras and differential

graded algebras, see e.g. [20, Appendix A].

2.2. Weil Algebra and Free Algebra

Given an L∞-algebra 𝔤, it is natural to consider the corresponding L∞-algebra of inner derivations, as done e.g. in [17]. Its Chevalley–
Eilenberg is known as the Weil algebra of 𝔤 and it will play a major role in our discussion.

Definition 2.4 ([33], [17]). The Weil algebra of an L∞-algebra 𝔤 is the differential graded commutative algebra

𝖶(𝔤) :=
(
⊙∙(𝔤[1]∗ ⊕ 𝔤[2]∗), Q𝖶

)
(2.15a)

with the differential Q𝖶 defined by

Q𝖶|𝔤[1]∗ :=Q𝖢𝖤 + 𝜎 and Q𝖶|𝔤[2]∗ := − 𝜎Q𝖢𝖤𝜎
−1, (2.15b)

where Q𝖢𝖤 is the Chevalley–Eilenberg differential on 𝔤[1]∗ and 𝜎 : 𝔤[1]∗ → 𝔤[2]∗ is the shift isomorphism of degree 1. Note that indeed Q2
𝖶 = 0.

We denote the dual L∞-algebra by 𝗂𝗇𝗇(𝔤), that is𝖶(𝔤) :=𝖢𝖤(𝗂𝗇𝗇(𝔤)).

The natural embedding i : 𝔤→𝗂𝗇𝗇(𝔤) is an L∞-algebra morphism, as one readily checks. That is, its dual yields the projection

i∗ : 𝖶(𝔤)↠ 𝖢𝖤(𝔤), (2.16)

which is a morphism of dgas because it satisfies Q𝖢𝖤i
∗ = i∗Q𝖶. The kernel of i

∗ is the ideal in𝖶(𝔤) generated by 𝔤[2]∗. Moreover, we
have an isomorphism 𝖢𝖤(𝔤) ≅ 𝖶(𝔤)∕ ker(i∗).
It is now useful to introduce the subalgebra

𝖶h(𝔤) := ⊙∙ 𝔤[2]∗ (2.17)

of horizontal elements in the Weil algebra. Note that Q𝖶 does not necessarily close on𝖶h(𝔤) and that𝖶h(𝔤) is in the kernel of i∗.
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As examples, we construct the Weil algebras of a generic Lie algebra and a generic Lie 2-algebra. Let 𝔤 be an ordinary, finite-
dimensional Lie algebra 𝔤 and let t𝛼 ∈ 𝔤[1]∗, 𝛼 = 1,… , d, be coordinate functions on 𝔤[1], which are of degree 1. We also introduce the
coordinate functions t̂𝛼 = 𝜎t𝛼 ∈ 𝔤[2]∗ on 𝔤[2], which are of degree 2. The Weil algebra𝖶(𝔤) is then the polynomial algebra generated
by t𝛼 and t̂𝛼 , and the Weil differential acts as

Q𝖶 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 and t̂𝛼 → −f 𝛼

𝛽𝛾
t𝛽 t̂𝛾 , (2.18)

where f 𝛼
𝛽𝛾
are again the structure constants of 𝔤.

For the case of a Lie 2-algebra 𝔤 = (𝔤−1 → 𝔤0), recall the generators and the form of the Chevalley–Eilenberg algebra𝖢𝖤(𝔤) from (2.9).
We introduce additional shifted generators t̂𝛼 = 𝜎t𝛼 and r̂a = 𝜎ra, and the Weil differential acts as

Q𝖶 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 − f 𝛼

a r
a + t̂𝛼 ,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 + f 𝛼

a r̂
a,

ra → 1
3!
f a
𝛼𝛽𝛾

t𝛼t𝛽 t𝛾 − f a
𝛼bt

𝛼rb + r̂a,

r̂a → − 1
2
f a
𝛼𝛽𝛾

t𝛼t𝛽 t̂𝛾 + f a
𝛼bt̂

𝛼rb − f a
𝛼bt

𝛼 r̂b

(2.19)

with the same structure constants f 𝛼
a , f

𝛼
𝛽𝛾
, f a

𝛼b, f
a

𝛼𝛽𝛾
∈ ℝ as appearing in (2.9). The relation Q2

𝖶 = 0 follows by construction.
Note that a morphism between the Chevalley–Eilenberg algebras of two L∞-algebras 𝔤 and �̃� readily lifts to a morphism between

their Weil algebras. In particular, a morphism Φ : 𝖢𝖤(𝔤)→ 𝖢𝖤(�̃�) can be lifted to a morphism Φ̂ : 𝖶(𝔤)→ 𝖶(�̃�) using 𝜎a → 𝜎Φ(a)
for generators a of 𝖢𝖤(𝔤), because the following diagrams commute:

a Q𝖢𝖤a + 𝜎a 𝜎a −𝜎Q𝖢𝖤a

Φ(a) Q𝖢𝖤Φ(a) + 𝜎Φ(a) 𝜎Φ(a) −𝜎Q𝖢𝖤Φ(a)

Φ̂

Q𝖶

Φ̂ Φ̂

Q𝖶

Φ̂
Q𝖶 Q𝖶

(2.20)

Closely related to the Weil algebra is the free algebra7 𝖥(𝔤) of an L∞-algebra 𝔤, which is given by

𝖥(𝔤) :=
(
⊙∙(𝔤[1]∗ ⊕ 𝔤[2]∗), Q𝖥 = 𝜎

)
, (2.21)

where 𝜎 : 𝔤[1]∗ → 𝔤[2]∗ is again the shift isomorphism. In fact, the Weil algebra 𝖶(𝔤) is naturally isomorphic to the corresponding
free algebra 𝖥(𝔤), as we have the isomorphisms

Υ : 𝖥(𝔤)→ 𝖶(𝔤), a → a, Υ−1 : 𝖶(𝔤)→ 𝖥(𝔤), a → a,

â → Q𝖶a, â → â −Q𝖢𝖤a,
(2.22)

where a ∈ 𝔤[1]∗ and â := 𝜎a ∈ 𝔤[2]∗, with Υ−1 ◦Υ = id𝖥(𝔤) and Υ ◦Υ−1 = id𝖶(𝔤). Note that these maps are indeed dga-morphisms, be-
cause the following diagrams commute:

a â â 0

a Q𝖶a Q𝖶a 0

Q𝖥

Υ Υ Υ

Q𝖥

Υ
Q𝖶 Q𝖶

(2.23a)

and

a Q𝖶a â −𝜎Q𝖢𝖤a

a Q𝖢𝖤a + â −Q𝖢𝖤a â −Q𝖢𝖤a −𝜎Q𝖢𝖤a

Q𝖶

Υ−1 Υ−1

Q𝖶

Υ−1 Υ−1

Q𝖥 Q𝖥

(2.23b)

7 These are also called free differential algebra in the supergravity literature, see [34] and references therein.
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2.3. Quasi-Isomorphisms and 2-Morphisms

As indicated above, it turns out that in most cases, the appropriate notion of equivalences for L∞-algebras is not a bijective L∞-algebra
morphism, but a generalization known as a quasi-isomorphism. In the higher product picture, we readily extend the corresponding
definition from cochain complexes:

Definition 2.5. An L∞-algebra quasi-isomorphism 𝜙 : 𝔤 → 𝔥 is a morphism of L∞-algebras, 𝜙 : 𝔤 → 𝔥, which induces an isomorphism on
cohomology8,

𝜙1 : H
∙
𝜇1
(𝔤)

≅
←←←←←←←←←←←→ H∙

𝜇1
(𝔥). (2.24)

Two L∞-algebras 𝔤 and 𝔥 are quasi-isomorphic, if there exists a quasi-isomorphism between them and we write 𝔤 ≊ 𝔥.

It is clear that quasi-isomorphisms form an equivalence relation. In particular, they are transitive by definition: morphisms of L∞-
algebras 𝜙 : 𝔤 → 𝔥 and 𝜓 : 𝔥 → 𝔩 can be composed to a morphism 𝜓 ◦𝜙 : 𝔤→ 𝔩, which descends to the composition of the isomor-
phisms on the cohomologies.
The definition of a quasi-isomorphisms can be reformulated as categorical equivalence, see e.g. [30] for the example of 2-term

L∞-algebras, and this picture is readily translated to the dga description of L∞-algebras:

Proposition 2.6 ([17]). A quasi-isomorphism between L∞-algebras 𝔤 and 𝔥 is equivalent to a pair of dga-morphisms

𝖢𝖤(𝔤) 𝖢𝖤(𝔥)

Φ

Ψ

(2.25a)

with

𝜂Ψ ◦Φ : Ψ ◦Φ → ≅ id𝖢𝖤(𝔤), 𝜂Φ ◦Ψ : Φ ◦Ψ→ ≅ id𝖢𝖤(𝔥). (2.25b)

We call the collection (Φ,Ψ, 𝜂Ψ ◦Φ, 𝜂Φ ◦Ψ) a dual quasi-isomorphism and say that 𝖢𝖤(𝔤) and 𝖢𝖤(𝔥) are dually quasi-isomorphic.9

For this proposition to be meaningful, we clearly need a notion of 2-morphisms for dga-algebras. In the case of differential graded
vector spaces, 2-morphisms are simply chain homotopies, but respecting the algebra product makes the definition slightly more
involved. It is helpful to note that 2-morphisms between morphisms from free dgas into arbitrary dgas are again straightforward to
define. Also, given L∞-algebras 𝔤 and 𝔥, together with dga-morphisms Φ : 𝖢𝖤(𝔤) → 𝖢𝖤(𝔥) and Ψ : 𝖢𝖤(𝔤) → 𝖢𝖤(𝔥), a 2-morphism 𝜂

between Φ and Ψ,

𝖢𝖤(𝔥) 𝖢𝖤(𝔤)

Ψ

Φ

𝜂 , (2.26)

can then be extended to a 2-morphism between morphisms from 𝖥(𝔤) to 𝖢𝖤(𝔥) as follows[17]:

𝖢𝖤(𝔤) 𝔤[2]∗

𝖢𝖤(𝔥) 𝖶(𝔤) 𝖥(𝔤)

𝖢𝖤(𝔤)

Φ
i∗

i∗

Υ

Ψ

𝜂
(2.27)

8 Recall that 𝜙1 is a chain map and therefore descends to cohomology.
9 Note that this nomenclature is important to distinguish from an ordinary quasi-isomorphism of the dgas 𝖢𝖤(𝔤) and 𝖢𝖤(𝔥), which induces an
isomorphism on theQ-cohomologies, whereas the homotopy equivalence introduced here corresponds to the dual of a quasi-isomorphism between
𝔥 and 𝔤, which refers to 𝜇1-cohomologies.
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where 𝜂 should vanish on 𝔤[2]∗ → 𝖶(𝔤) in order to compensate for the ambiguities arising in the extension from 𝖢𝖤(𝔤) to𝖶(𝔤). For
convenience, let us also introduce the following pullbacks to 𝖥:

Φ𝖥 :=Φ ◦ i∗ ◦Υ and Ψ𝖥 :=Ψ ◦ i∗ ◦Υ. (2.28)

These considerations lead to the following definition.

Definition 2.7 ([17]). A 2-morphism 𝜂 from Φ to Ψ as in (2.26) is given by a linear map 𝜂 of degree −1 on the generators of the free algebra
𝖥(𝔤),

𝜂 : 𝔤[1]∗ ⊕ 𝔤[2]∗ → 𝖢𝖤(𝔥), (2.29a)

which is continued to all of 𝖥(𝔤) by the formula

𝜂 : a1… an →
1
n!

∑
𝜎∈Sn

𝜀(𝜎)(a1,… , an)
n∑

k=1
(−1)

k−1∑
i=1
|a𝜎(i)|

Φ𝖥(a𝜎(1) … a𝜎(k−1))𝜂(a𝜎(k))Ψ𝖥(a𝜎(k+1) … a𝜎(n)) (2.29b)

for ai ∈ 𝔤[1]∗ ⊕ 𝔤[2]∗ to a chain homotopy on 𝖥(𝔤),

Φ𝖥 − Ψ𝖥 :=Φ ◦ i∗ ◦Υ − Ψ ◦ i∗ ◦Υ = [Q, 𝜂] = Q𝖢𝖤 ◦ 𝜂 + 𝜂 ◦Q𝖥, (2.30)

and which becomes trivial when restricted to the generators Υ−1(𝔤[2]∗) of 𝖶h(𝔤). Here, 𝜀(𝜎; a1,… , an) is the symmetric Koszul sign of the
permutation 𝜎 of a1,… , an.

A few remarks on this definition are in order. First, we note that it suffices to ensure condition (2.30) on the generators of 𝖥(𝔤)
as the continuation (2.29b) then extends this property to all of 𝖥(𝔤). Second, the triviality upon restriction to Υ−1(𝔤[2]∗) implies that
𝜂 : 𝖥(𝔤)→ 𝖢𝖤(𝔥) induces a map 𝜂𝖶 : 𝖶(𝔤)→ 𝖢𝖤(𝔥) which can be defined by its image of the generators a ∈ 𝔤[1]∗. The fact that 𝜂𝖶
vanishes on all 𝜎a ∈ 𝖶(𝔤) then fixes its image of Q𝖶a inside𝖶(𝔤) and on 𝜎𝖥a inside 𝖥(𝔤). In particular, we have

𝜂(𝜎𝖥a) = 𝜂(Q𝖢𝖤a) (2.31)

on generators a ∈ 𝖥(𝔤). Third, for 𝜂𝖶 = 𝜂 ◦Υ−1 we have

(Φ𝖶 − Ψ𝖶)(a) := (Φ ◦ i∗ − Ψ ◦ i∗)(a) = (Q𝖢𝖤 ◦ 𝜂𝖶 + 𝜂𝖶 ◦Q𝖶)(a) (2.32)

on the generators a of 𝖶(𝔤) since Υ is a dga-isomorphism. Very importantly, however, the continuation formula (2.29b) does not
extend to all of 𝖶(𝔤): since Υ−1(â) for a ∈ 𝔤[1]∗ is not necessarily a homogeneous polynomial in the generators, the continuation
formula does not have a simple analogue on𝖶(𝔤). Fourth, let us stress that definition 2.7 naturally extends to 2-morphisms between
morphisms between Weil algebras as 𝖶(𝔤) can be seen as the Chevalley–Eilenberg algebra 𝖢𝖤(𝗂𝗇𝗇(𝔤)). Fifth, 2-morphisms can be
composed horizontally and vertically, and details are presented in appendix A, where also the composition of quasi-isomorphisms
is discussed.
It is instructive to spell out what this definition means in the example of morphisms between Lie 2-algebras 𝔤 = 𝔤−1 ⊕ 𝔤0 and

�̃� = �̃�−1 ⊕ �̃�0. Recall our choice of generators (t𝛼 , ra) and the action of the Chevalley–Eilenberg differential Q from (2.9). We introduce
analogous generators (t̃𝜇 , r̃m) and a differential Q̃ encoded in structure constants f̃ 𝜇

m , f̃ 𝜇
𝜈𝜅
, f̃ m

𝜇n and f̃
m

𝜇𝜈𝜅
for �̃�. The morphisms Φ and Ψ

are defined by their images of the generators of 𝔤[1]∗:

Φ : t𝛼 → Φ𝛼
𝜇
t𝜇 , ra → Φa

mr̃
m + 1

2
Φa

𝜇𝜈
t̃𝜇 t̃𝜈 ,

Ψ : t𝛼 → Ψ𝛼
𝜇
t𝜇 , ra → Ψa

mr̃
m + 1

2
Ψa

𝜇𝜈
t̃𝜇 t̃𝜈 .

(2.33)

To fix the 2-morphism, we note that a generic map 𝜂 : 𝔤[1]∗ ⊕ 𝔤[2]∗ → 𝖢𝖤(�̃�) of degree −1 has the images

𝜂 : t𝛼 → 0, ra → 𝜂a
𝜇
t̃𝜇 , (2.34)

which implies that the map 𝜂𝖶 = 𝜂 ◦Υ−1, taking generators of𝖶(𝔤) to 𝖢𝖤(�̃�), satisfies

𝜂𝖶 : t𝛼 → 0, ra → 𝜂a
𝜇
t̃𝜇. (2.35)
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The requirement that 𝜂𝖶 vanishes along 𝔤[2]∗ ⊂ 𝖶(𝔤) together with the formula (2.29b) then also defines 𝜂𝖶 onQ𝖶t
𝛼 andQ𝖶r

a, which
we use to calculate

[Q, 𝜂]t𝛼 = Q̃𝖢𝖤(𝜂𝖶(t
𝛼)) − 𝜂𝖶(Q𝖶t

𝛼) = f 𝛼
a 𝜂a

𝜇
t̃𝜇 ,

[Q, 𝜂]ra = Q̃𝖢𝖤(𝜂𝖶(r
a)) − 𝜂𝖶(Q𝖶r

a) = −𝜂a
𝜇
f̃ 𝜇
m r̃

m − 1
2
𝜂a

𝜇
f̃ 𝜇
𝜈𝜅
t̃𝜈 t̃𝜅 + 1

2
f a
𝛼b(Ψ

𝛼
𝜇
𝜂b

𝜈
+ 𝜂b

𝜇
Ψ𝛼

𝜈
)t̃𝜇 t̃𝜈 .

(2.36)

The condition Ψ𝖶 − Φ𝖶 = [Q, 𝜂𝖶] then translates to

Φ𝛼
𝜇
− Ψ𝛼

𝜇
= f 𝛼

a 𝜂a
𝜇
,

Φa
m − Ψa

m = −𝜂a
𝜇
f̃ 𝜇
m ,

Φa
[𝜇𝜈] − Ψa

[𝜇𝜈] = −𝜂a
𝜅
f̃ 𝜅
𝜇𝜈

+ f a
𝛼b(Ψ

𝛼
𝜇
𝜂b

𝜈
+ 𝜂b

𝜇
Ψ𝛼

𝜈
),

(2.37)

and this agrees with the familiar condition for 2-morphisms as given in [35], cf. also appendix A of [17].
As an example of a quasi-isomorphism, let us show that the Weil algebra𝖶(𝔤) of an L∞-algebra 𝔤 is quasi-isomorphic to the Weil

algebra𝖶(∗) of the trivial L∞-algebra. We have already shown that𝖶(𝔤) is isomorphic to the free algebra 𝖥(𝔤), so it merely remains to
show that 𝖥(𝔤) ≊ 𝖶(∗). The relevant morphisms are obvious,

𝖥(𝔤) 𝖶(∗)
Φ

Ψ

(2.38)

with

Φ(−) = 0 and Ψ : 0 → 0. (2.39)

Clearly, Φ ◦Ψ = id𝖶(∗), so it remains to find a 2-morphism 𝜂 : Ψ ◦Φ → id𝖥(𝔤). There is only one generic choice, namely

𝜂(a) =

{
−𝜎−1

𝖥 (a) for generators a ∈ im(𝜎),
0 else.

(2.40)

where 𝜎𝖥 is the shift isomorphism in 𝖥(𝔤). We then have [Q, 𝜂]𝖥(𝔤) = −id𝖥(𝔤) = Ψ ◦Φ − id𝖥(𝔤).
The map 𝜂 can now be used to show that the Q-cohomology of 𝖥(𝔤) is trivial: given an 𝛼 ∈ 𝖥(𝔤) with Q𝛼 = 0, we have 𝛼 =

−id𝖥(𝔤)(−𝛼) = [Q, 𝜂](−𝛼) = Q(−𝜂(𝛼)) and therefore any Q-closed algebra element is Q-exact. The isomorphism Υ between 𝖥(𝔤) and
𝖶(𝔤) allows us to translate this argument to𝖶(𝔤):

Lemma 2.8. The Q-cohomology of the Weil algebra𝖶(𝔤) of an L∞-algebra 𝔤 is trivial.

To prove this lemma, consider an 𝛼 ∈ 𝖶(𝔤) with Q𝛼 = 0. We then have 𝛽 = Υ−1(𝛼) ∈ 𝖥(𝔤) which is exact and closed, i.e. 𝛽 = Q𝖥(𝜂(𝛽)).
It follows that Q𝖶Υ(𝜂(𝛽)) = Υ(Q𝖥(𝜂(𝛽))) = Υ(𝛽) = 𝛼 and 𝛼 is thus exact.

2.4. Structural Theorems for L∞-Algebras

Let us briefly recall some important structural theorems for L∞-algebras which will simplify our discussion.

Definition 2.9. Let 𝔤 be an L∞-algebra with higher products 𝜇i, i ∈ ℕ+. We call 𝔤

◦ strict if 𝜇i = 0 for i ≥ 3 and 𝔤 is thus simply a differential graded Lie algebra;
◦ minimal if 𝜇1 = 0;
◦ linearly contractible if 𝜇i = 0 for i > 1 and H∙

𝜇1
(𝔤) = 0.

Fundamentally, we have the following theorem.

Theorem 2.10 (Decomposition theorem, cf. [36]). Any L∞-algebra is isomorphic as an L∞-algebra to the direct sum of a minimal and a
linearly contractible L∞-algebra.

Applying a projection to the minimal part of an L∞-algebra (which evidently induces an isomorphism on the 𝜇1-cohomology), we
immediately arrive at the following theorem, which historically predates the decomposition theorem:
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Theorem 2.11 (cf. [37, 36]). Any L∞-algebra is quasi-isomorphic to a minimal L∞-algebra.

We can thus endow the cohomology H∙
𝜇1
(𝔤) of an L∞-algebra 𝔤 with an L∞-algebra structure such that it is quasi-isomorphic to 𝔤

itself. The resulting L∞-algebra is minimal in the sense that it is a dimensionally smallest representative of the quasi-isomorphism
class of 𝔤. It is therefore called a minimal model of 𝔤.
Finally, we have another extreme case, relating L∞-algebras to differential graded Lie algebras:

Theorem 2.12 ([38, 39]). Any L∞-algebra is quasi-isomorphic to a strict L∞-algebra.

Let us discuss the example of a Lie 2-algebra 𝔤 = 𝔤−1 ⊕ 𝔤0 in more detail. First, we note that there is an exact sequence

0 ←→ ker(𝜇1) → 𝔤−1
𝜇1
←←←←←←←←←←←←←←→ 𝔤0

𝜋
←←←←←←←←←←←→ coker(𝜇1) ←→ 0, (2.41)

where coker(𝜇1) carries a Lie algebra structure induced by 𝜇2. A minimal model 𝔤◦ of 𝔤 has underlying graded vector space

𝔤◦ = 𝔤◦−1 ⊕ 𝔤◦0 ≅ ker(𝜇1) ⊕ coker(𝜇1). (2.42)

Using the decomposition theorem, we can further decompose 𝔤 (non-canonically) according to

𝔤 = 𝔤−1 ⊕ 𝔤0 =
⎛⎜⎜⎜⎝
𝔤0−1 = ker(𝜇1) 𝔤00 ≅ coker(𝜇1)

⊕ ⊕

𝔤1−1 ≅ im(𝜇1)
𝜇1=id
←←←←←←←←←←←←←←←←←←←←→ 𝔤10 = im(𝜇1)

⎞⎟⎟⎟⎠ (2.43)

with the only non-trivial higher products being

𝜇1 : 𝔤1−1 → 𝔤10, 𝜇2 : 𝔤00 ∧ 𝔤00 → 𝔤00, 𝜇2 : 𝔤00 ∧ 𝔤0−1 → 𝔤0−1, 𝜇3 : ∧3𝔤00 → 𝔤0−1. (2.44)

In particular, 𝔤00 is a Lie algebra, 𝔤
0
−1 is a 𝔤

0
0-module with action induced by 𝜇2 and 𝜇3 is an element of the Lie algebra cohomology

groupH3(𝔤00, 𝔤
0
−1).

2.5. String Lie 2-Algebra Models

In the vast category of L∞-algebras, there are particularly interesting objects which are obtained by extending metric Lie algebras by
particular cocycles. As will become clear, it is these L∞-algebras that underlie truly non-abelian higher gauge theories. The simplest
non-trivial one which is relevant to the application in string theory is the string Lie 2-algebra. In the following, we discuss the relevant
algebraic structures, giving a minimal and a strict model.
The string group 𝖲𝗍𝗋𝗂𝗇𝗀(n) sits in the sequence

⋯ ←→ 𝖲𝗍𝗋𝗂𝗇𝗀(n) ←→ 𝖲𝗉𝗂𝗇(n) ←→ 𝖲𝗉𝗂𝗇(n) ←→ 𝖲𝖮(n) ←→ 𝖮(n), (2.45)

which is known as the Whitehead tower of 𝖮(n). It is constructed by successively removing the lowest homotopy group: 𝜋0(𝖮(n)) is
removed in the step from 𝖮(n) to 𝖲𝖮(n), 𝜋1(𝖮(n)) in the step to 𝖲𝗉𝗂𝗇(n) and 𝜋2(𝖮(n)) is already trivial. The string group 𝖲𝗍𝗋𝗂𝗇𝗀(n) is
obtained by removing 𝜋3(𝖮(n)). That is, 𝖲𝗍𝗋𝗂𝗇𝗀(n) is a 3-connected cover of 𝖲𝗉𝗂𝗇(n).

[40] This definition only determines 𝖲𝗍𝗋𝗂𝗇𝗀(n) up to
homotopical equivalence and consequently, there are a variety of models.
Particularly interesting models are given by Lie 2-groups, and one example is that of [28]. As shown in [41], this Lie 2-group can be

differentiated to a minimal L∞-algebra which we call, following the categorical nomenclature, the skeletal model. This Lie 2-algebra
allows for an immediate generalization to arbitrary metric Lie algebras, cf. also [30]:

Definition 2.13. Let 𝔤 be a Lie algebra endowed with a metric (−,−). The skeletal model of the string Lie 2-algebra or, simply, the skeletal string
algebra of 𝔤 is the 2-term L∞-algebra

𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) =
(

ℝ[1]
0
←→ 𝔤

)
(2.46a)

with non-trivial higher products

𝜇2 : 𝔤 ∧ 𝔤 → 𝔤, 𝜇2(a1, a2) = [a1, a2],

𝜇3 : 𝔤 ∧ 𝔤 ∧ 𝔤 → ℝ, 𝜇3(a1, a2, a3) = (a1, [a2, a3]),
(2.46b)

where [−,−] is the commutator in 𝔤.
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TheWeil algebra𝖶(𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)) is generated by coordinate functions t𝛼 , r of degrees 1 and 2, respectively, together with their shifted
copies t̂𝛼 = 𝜎t𝛼 and r̂ = 𝜎r of degrees 2 and 3. The differential corresponding to (2.46b) is then

Q : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , r → 1

3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + r̂,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 , r̂ → − 1

2
f𝛼𝛽𝛾 t

𝛼t𝛽 t̂𝛾
(2.47)

with f 𝛼
𝛽𝛾
being the structure constants of 𝔤 and f𝛼𝛽𝛾 := 𝜅𝛼𝛿 f

𝛿
𝛽𝛾
, where the components 𝜅𝛼𝛽 encode the metric.

The string 2-group model of [28] is rather complicated and historically, a strict model of the string 2-group therefore came first,[42]

which is readily obtained by integrating the following strict Lie 2-algebra model:

Definition 2.14 ([42]). Let 𝔤 be again a Lie algebra endowed with a metric (−,−). The loop algebra model of the string Lie 2-algebra or, simply,
the loop string algebra is the 2-term L∞-algebra

𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) =
(
L̂0𝔤[1]

𝜇1
←←←←←←←←←←←←←←←←←←←←→ P0𝔤

)
with L̂0𝔤 := L0𝔤 ⊕ ℝ , (2.48a)

where P0𝔤 and L0𝔤 are the spaces of based paths and loops10 in 𝔤, respectively. The non-trivial higher products are

𝜇1 : L̂0𝔤[1] → P0𝔤, 𝜇1(𝜆, r) = 𝜆,

𝜇2 : P0𝔤 ∧ P0𝔤 → P0𝔤, 𝜇2(𝛾1, 𝛾2) = [𝛾1, 𝛾2],

𝜇2 : P0𝔤 ⊗ L̂0𝔤[1] → L̂0𝔤[1], 𝜇2

(
𝛾 , (𝜆, r)

)
=
(
[𝛾 , 𝜆] , −2∫

1

0
d𝜏

(
𝛾(𝜏), �̇�(𝜏)

))
,

(2.48b)

where here and in the following, a dot denotes the obvious derivative with respect to the loop parameter 𝜏.

Note that the homogeneously graded subspace L̂0𝔤 := L0𝔤 ⊕ ℝ is the Lie algebra of the Kac–Moody central extension of L0𝖦 for 𝖦 a
Lie group integrating 𝔤.
To construct the Weil algebra𝖶(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)) we now have to somehow dualize the infinite-dimensional mapping spaces P0𝔤 and

L0𝔤. We can do this pointwise for each value of the path and loop parameters and thus introduce coordinate functions t𝛼𝜏 and (r𝛼𝜏 , r0)
of degrees 1 and 2, respectively. The shifted copies are again denoted by t̂𝛼𝜏 and (r̂𝛼𝜏 , r̂0). The differential corresponding to (2.48b) is
then given by its action on the coordinate functions,

Q : t𝛼𝜏 → − 1
2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 + t̂𝛼𝜏 , t̂𝛼𝜏 → −f 𝛼

𝛽𝛾
t𝛽𝜏 t̂𝛾𝜏 + r̂𝛼𝜏 ,

r𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏r𝛾𝜏 + r̂𝛼𝜏 , r̂𝛼𝜏 → −f 𝛼

𝛽𝛾
t𝛽𝜏 r̂𝛾𝜏 + f 𝛼

𝛽𝛾
t̂𝛽𝜏r𝛾𝜏 ,

r0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + r̂0, r̂0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽

(
t𝛼𝜏 ̇̂r𝛽𝜏 − t̂𝛼𝜏 ṙ𝛽𝜏

)
,

(2.49)

where f 𝛼
𝛽𝛾
are again the structure constants of 𝔤.

A quasi-isomorphism between 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) and 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) is readily found, cf. also [42]. We have a morphism of L∞-algebras 𝜓 :
𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) → 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) given by the chain map

ℝ[1] L0𝔤[1] ⊕ ℝ[1]

𝔤 P0𝔤

𝜓1

0 𝜇1

𝜓1 = ⋅𝓁(𝜏)
(2.50a)

as well as

𝜓2(a1, a2) =
(
[a1, a2](𝓁(𝜏) − 𝓁2(𝜏)), 0

)
. (2.50b)

10 Our based loops are those of [42] and slightly differ from the canonical definition. A based loop 𝜆 ∈ 𝖫0𝔤 is a smooth function 𝜆 : [0, 1]→ 𝔤 such

that 𝜆(0) = 𝜆(1) = 0 ∈ 𝔤. In other words, they are based paths with endpoint 0 ∈ 𝔤 and we have the short exact sequence 0 → L0𝔤→P0𝔤
𝜕
←←←←←←→ 𝔤 → 0,

where 𝜕 is the endpoint evaluation. Also, composability of our paths and loops requires them to be lazy in the sense that they are constant in a
neighborhood of 0 and 1. We will suppress all the technicalities related to these “sitting instances” etc.
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Here, ⋅𝓁(𝜏) : 𝔤 → P0𝔤 is the embedding of a0 ∈ 𝔤 as the straight line a(𝜏) = a0𝓁(𝜏), for some function

𝓁 ∈ ∞([0, 1]) with 𝓁(0) = 0 and 𝓁(1) = 1. (2.51)

This morphism induces an isomorphism on the cohomologies11

H∙
𝜇1
(𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)) = H∙

𝜇1
(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)) = (ℝ[1] ←→ 𝔤). (2.52)

A quasi-isomorphism can also readily be found. That is, we introduce a second morphism 𝜙,

𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)

𝜓

𝜙

, (2.53)

such that 𝜙 ◦𝜓 ≅ id𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) and 𝜓 ◦𝜙 ≅ id𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤). Explicitly, let 𝜙 be given by the chain map

L0𝔤[1] ⊕ ℝ[1] ℝ[1]

P0𝔤 𝔤

𝜙1 = prℝ[1]

𝜇1 0
𝜙1 = 𝜕

(2.54a)

together with

𝜙2(x1, x2) =
1

∫
0

d𝜏 (ẋ1, x2) − (x1, ẋ2), (2.54b)

where prR is the obvious projection and 𝜕 : P0𝔤 → 𝔤 is the endpoint evaluation. We then have 𝜙 ◦𝜓 = id𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) and a 2-morphism
𝜂∗ : 𝜓 ◦𝜙 → id𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) in the sense of [30], which is encoded in the map

𝜂∗ : P0𝔤 → L0𝔤[1] ⊕ ℝ[1], 𝜂∗(𝛾) =
(

𝛾 − 𝓁(𝜏)𝜕𝛾 , 0
)
. (2.55)

In the dual dga-picture, we have morphisms of differential graded algebras,

𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)) 𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤))

Φ

Ψ

, (2.56a)

which act according to12

Φ : t𝛼𝜏
lp → 𝓁(𝜏)t𝛼sk, r𝛼𝜏

lp →
1
2
f 𝛼
𝛽𝛾
t𝛽skt

𝛾

sk(𝓁(𝜏) − 𝓁2(𝜏)), r0lp → −rsk,

Ψ : t𝛼sk = t𝛼1lp , rsk → −r0lp − ∫ d𝜏
1
2
𝜅𝛼𝛽 (ṫ

𝛼𝜏
lp t

𝛽𝜏

lp − t𝛼𝜏
lp ṫ

𝛽𝜏

lp ),
(2.56b)

where we added subscripts to distinguish the generators for the skeletal model and the loopmodel. We note thatΦ ◦Ψ = id𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤))
and there is a 2-morphism

𝜂 : Ψ ◦Φ ⇒ id𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)), (2.56c)

11 Note that ker(𝜇1) = ℝ and im(𝜇1) = L0𝔤 ⊂ P0𝔤 in 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) and that two paths with the same endpoint in P0𝔤 differ by a loop in L0𝔤.
12 The morphism Φ is dual to the sum 𝜙1 +

1
2
𝜙2 +… degree-shifted and extended as a map to the codifferential graded commutative coalgebra

underlying the L∞-algebra under consideration, cf. also the discussion in [20].
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which is encoded in a map 𝜂 : 𝖥(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤))→ 𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)) non-trivial only on the generators r𝛼𝜏 ,

𝜂(r𝛼𝜏
lp ) = t𝛼𝜏

lp − 𝓁(𝜏)t𝛼1lp . (2.56d)

This is indeed the dual to 𝜂∗ from (2.55) and we have in particular

[Q, 𝜂] :=Q𝖢𝖤 ◦ 𝜂 + 𝜂 ◦ 𝜎 = Ψ ◦Φ ◦ i∗ ◦Υ − id𝖶(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)) ◦ i
∗ ◦Υ. (2.57)

Explicitly, the action of [Q, 𝜂] on the various generators reads as

(Q𝖢𝖤 ◦ 𝜂 + 𝜂 ◦Q𝖶)(t
𝛼𝜏
lp ) = 𝜂(Q𝖶t

𝛼𝜏
lp ) = −𝜂(r𝛼𝜏

lp ) = 𝓁(𝜏)t𝛼1lp − t𝛼𝜏
lp = (Ψ ◦Φ − id)(t𝛼𝜏

lp ), (2.58a)

(Q𝖢𝖤 ◦ 𝜂 + 𝜂 ◦Q𝖶)(r
𝛼𝜏
lp ) = Q𝖢𝖤(t

𝛼𝜏
lp − 𝓁(𝜏)t𝛼1lp ) + 𝜂(Q𝖶r

𝛼𝜏
lp ) = − 1

2
f 𝛼
𝛽𝛾
(t𝛽𝜏

lp t
𝛾𝜏

lp − 𝓁(𝜏)t𝛽1lp t
𝛾1
lp ) − r𝛼𝜏

lp − 𝜂(f 𝛼
𝛽𝛾
t𝛽𝜏

lp r
𝛾𝜏

lp )

= 1
2
f 𝛼
𝛽𝛾
t𝛽1lp t

𝛾1
lp (𝓁(𝜏) − 𝓁2(𝜏)) − r𝛼𝜏

lp = (Ψ ◦Φ − id)(r𝛼𝜏
lp ),

(2.58b)

(Q𝖢𝖤 ◦ 𝜂 + 𝜂 ◦Q𝖶)(r0lp) = 𝜂

(
2∫ d𝜏 𝜅𝛼𝛽 t

𝛼𝜏
lp ṙ

𝛽𝜏

lp

)
= ∫ d𝜏

1
2
𝜅𝛼𝛽 (ṫ

𝛼𝜏
lp t

𝛽𝜏

lp − t𝛼𝜏
lp ṫ

𝛽𝜏

lp ) = (Ψ ◦Φ − id)(r0lp), (2.58c)

where we used

𝜂(f 𝛼
𝛽𝛾
t𝛽𝜏

lp r
𝛾𝜏

lp ) =
1
2
f 𝛼
𝛽𝛾

(
𝜂(r𝛾𝜏

lp )t
𝛽𝜏

lp − (Ψ ◦Φ)(t𝛽𝜏

lp )𝜂(r
𝛾𝜏

lp )
)
= − 1

2
f 𝛼
𝛽𝛾

(
t𝛽𝜏

lp (t
𝛾𝜏

lp − 𝓁(𝜏)t𝛾1lp ) + 𝓁(𝜏)t𝛽1lp (t
𝛾𝜏

lp − 𝓁(𝜏)t𝛾1lp )
)

= − 1
2
f 𝛼
𝛽𝛾
t𝛽𝜏

lp t
𝛾𝜏

lp + 1
2
f 𝛼
𝛽𝛾
𝓁2(𝜏)t𝛽1lp t

𝛾1
lp ,

(2.58d)

and

𝜂

(
2∫ d𝜏 𝜅𝛼𝛽 t

𝛼𝜏
lp ṙ

𝛽𝜏

lp

)
= ∫ d𝜏 𝜅𝛼𝛽

(
𝜂(ṙ𝛽𝜏

lp )t
𝛼𝜏
lp − (Ψ ◦Φ)(t𝛼𝜏

lp )𝜂(ṙ
𝛽𝜏

lp )
)
= −∫ d𝜏 𝜅𝛼𝛽

(
t𝛼𝜏
lp ṫ

𝛽𝜏

lp − t𝛼𝜏
lp t

𝛽1
lp + 𝓁(𝜏)t𝛼1lp ṫ

𝛽𝜏

lp

)
= −∫ d𝜏 𝜅𝛼𝛽 t

𝛼𝜏
lp ṫ

𝛽𝜏

lp .

(2.58e)

Altogether, we conclude that 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) and 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) are quasi-isomorphic as 2-term L∞-algebras. They form two possible extreme
models of the string Lie 2-algebra: a minimal and a strict one, cf. definition 2.9. Note that the simplicity of the first comes at the price
of a more involved integrated version, while the simple integrated version of the second comes with the issue of having to work with
infinite-dimensional spaces.
Having these two extreme examples at hand is important because, as mentioned above and stated in [3, 15, 16], we always want to

ensure that the higher gauge theories we construct are agnostic about the explicit model of the gauge L∞-algebra used to define them.

2.6. Extended Skeletal Model

The string Lie 2-algebra allows for a further description which will be very useful for our discussion later. Note that 𝔰𝔱𝔯𝔦𝔫𝔤(𝔤) is
essentially an extensions of 𝔤 defined by trivializing the cocycle 𝜇 = 1

3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 . This cocycle parametrizes a map 𝖢𝖤(ℝ[2]) → 𝖢𝖤(𝔤) in
which the single generator of 𝖢𝖤(ℝ[2]) is mapped to 𝜇. Dually, we have a morphism 𝜇 : 𝔤 → ℝ[2], which gives rise to a Lie 3-algebra
�̂�sk quasi-isomorphic to 𝔤, which fits into the short exact sequence

0 ←→ 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) → �̂�sk ←←←←←←←←←→ ℝ[2] ←→ 0, �̂�sk ≊ 𝔤, (2.59)

cf. [17, Prop. 20]. An element of 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) can be seen as an element of �̂�sk in the kernel of the projection onto ℝ[2].13 It turns out
that this description is very important for the discussion of string structures, and we shall describe the maps involved in (2.59) in
the following.

13 A simple analogy is the short exact sequence 0 ←←←←←←←←←←←←←←←→ 𝔰𝔲(n) ←←←←←←←←←←←←←←←→ 𝔲(n)
tr
←←←←←←←←←←←←←←←→ 𝔲(1) ←←←←←←←←←←←←←←←→ 0, which justifies identifying elements of 𝔰𝔲(n) with traceless

elements of 𝔲(n).
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We note that any n-term L∞-algebra possess an extension to an n + 1-term L∞-algebra by their left-most kernel of 𝜇1, as explained
in appendix C. In the case of 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤), this leads to the Lie 3-algebra

�̂�sk :=
(
ℝq

id
←←←←←←←←←←←←→ ℝr ←→ 𝔤t

)
:=

(
ℝ[2]

id
←←←←←←←←←←←←→ ℝ[1] ←→ 𝔤t

)
≊ 𝔤, (2.60)

where the subscripts q, r, and t help to identify the various subspaces of �̂�sk, in particular to distinguish between the two grade-shifted
copies of ℝ, and to suppress the grade-shifts. The Chevalley–Eilenberg algebra of �̂�sk is generated by coordinate functions t𝛼 , r, and q
of degrees 1, 2, 3, respectively. The action of the differential on generators is, cf. again appendix C,

Q𝖢𝖤 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 , r → 1

3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + q, q → 0, (2.61)

where t𝛼 ∈ 𝔤∗t [1], r ∈ ℝ∗
r [2] and q ∈ ℝ∗

q [3] are the coordinate functions on the shifted graded vector space underlying �̂�sk.
Note that we have both a projection and an embedding

�̂�sk ↠ 𝔤 and 𝔤→�̂�sk, (2.62)

which yield dual maps

𝖢𝖤(�̂�sk) 𝖢𝖤(𝔤)

Φ

Ψ

, (2.63a)

Φ : t𝛼 → t̃𝛼 , r → 0, q → − 1
3!
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 ,

Ψ : t̃𝛼 → t𝛼 ,
(2.63b)

where t̃𝛼 are the generators of 𝖢𝖤(𝔤). One readily checks that the differentials are respected, i.e. Q̃𝖢𝖤 ◦Φ = Φ ◦Q𝖢𝖤 and Q𝖢𝖤 ◦Ψ =
Ψ ◦ Q̃𝖢𝖤.
To promote this pair of maps to a dual quasi-isomorphism, we note that Φ ◦Ψ is the identity and Ψ ◦Φ can be connected to the

identity via the 2-morphism

𝜂 : 𝖶(�̂�sk) ←→ 𝖢𝖤(�̂�sk),

𝜂 : t𝛼 → 0, r → 0, q → −r.
(2.63c)

In conclusion, we can identify 𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)) = 𝖢𝖤(�̂�sk)∕⟨q⟩, where ⟨q⟩ is the differential ideal generated by q.
Evidently, there is a similar kernel-extension �̂�lp leading to an analogous description of the loop model,

0 ←→ 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤) → �̂�lp ≊ 𝔤 ←←←←←←←←←→ ℝ[2] ←→ 0 and 𝖢𝖤(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)) = 𝖢𝖤(�̂�lp)∕⟨q⟩. (2.64)

3. Invariant Polynomials

Besides the Chevalley–Eilenberg and theWeil algebras of an L∞-algebra, we shall also be interested in its invariant polynomials. Again,
a key point here is that all our constructions should be compatible with quasi-isomorphisms, cf. also [43].

3.1. Invariant Polynomials and Chevalley–Eilenberg Algebra Cocycles

An invariant polynomial is a horizontal element p ∈ 𝖶h(𝔤), which is either required to be closed under Q𝖶 or, more generally, whose
image under Q𝖶 also lies entirely in𝖶h(𝔤), cf. [17]. We will use the following definitions:

Definition 3.1 ([33, 17]). The invariant polynomials 𝗂𝗇𝗏(𝔤) of an L∞-algebra 𝔤 form the subset of elements p in𝖶h(𝔤) for which Q𝖶p ∈ 𝖶h(𝔤).
We also introduce the inclusion map

e : 𝗂𝗇𝗏(𝔤)→𝖶(𝔤). (3.1)

The vector space of reduced invariant polynomials 𝗂𝗇𝗏(𝔤) is given by the Q-closed elements in𝖶h(𝔤) modulo the equivalence relation

p1 ∼ p2 ⇔ p1 − p2 ∈ Q𝖶 ker(i
∗). (3.2)
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This can be promoted to the free algebra of reduced invariant polynomials ⟨𝗂𝗇𝗏(𝔤)⟩𝖥, which is the algebra generated by the elements of 𝗂𝗇𝗏(𝔤)
and which is endowed with the trivial differential.

For Lie algebras 𝔤 both definitions correspond to the ordinary notion of invariant polynomials: a horizontal element p ∈ 𝖶h(𝔤) is a
sum of terms of the form p = 1

n!
p𝛼1…𝛼n

t̂𝛼1 … t̂𝛼n , in the coordinates used above in (2.18) and a horizontal element p ∈ 𝖶h(𝔤) is always
of even degree. Therefore,

Q𝖶p ∼ p𝛼1…𝛼n
(Q𝖶 t̂

𝛼1 )… t̂𝛼n = −p𝛼1…𝛼n
f 𝛼1
𝛽𝛾
t𝛽 t̂𝛾 … t̂𝛼n ∈ 𝖶h(𝔤) ⇔ Q𝖶p = 0. (3.3)

A distinction is only apparent for higher L∞-algebras, and we shall return to this point later.
The invariant polynomials form the dg-algebra of invariant polynomials 𝗂𝗇𝗏(𝔤) that sits in the complex

0 ←← 𝖢𝖤(𝔤)
i∗

↞𝖶(𝔤)
e
← 𝗂𝗇𝗏(𝔤) ←← 0, (3.4)

which fails to be exact at𝖶(𝔤). This complex will feature prominently in the discussion of higher connections with gauge L∞-algebra
𝔤, or 𝔤-connection objects for short, in the following.
We also note that the invariant polynomials are in the kernel of i∗ and that Q𝖶 restricts to a map Q𝖶 : 𝗂𝗇𝗏(𝔤)→ 𝗂𝗇𝗏(𝔤). Therefore,

they form a dga dual to an L∞-algebra, which we denote by 𝔤𝗂𝗇𝗏 so that 𝗂𝗇𝗏(𝔤) :=𝖢𝖤(𝔤𝗂𝗇𝗏).
There is now an important relation between L∞-algebra cocycles, i.e. 𝜇 ∈ 𝖢𝖤(𝔤) with Q𝖢𝖤𝜇 = 0, and reduced invariant polynomials

p. Consider the following double fibration:

𝖶(𝔤)

𝖢𝖤(𝔤) 𝗂𝗇𝗏(𝔤)

i∗ Q𝖶
cs

𝜇 p

i∗ Q𝖶
(3.5)

where we suppressed the projection from Q𝖶(𝖶(𝔤)) to 𝗂𝗇𝗏(𝔤).

Definition 3.2 (cf. [17]). Let 𝔤 be an L∞-algebra. Given a cocycle 𝜇 ∈ 𝖢𝖤(𝔤) and a reduced invariant polynomial p ∈ 𝗂𝗇𝗏(𝔤), we call an element
cs ∈ 𝖶(𝔤) such that

i∗(cs) = 𝜇 and Q𝖶cs = p, (3.6)

a Chern–Simons element witnessing the transgression between 𝜇 and p. We say that 𝜇 transgresses to p and p suspends to 𝜇.

We note that p ∈ 𝖶h ⊂ ker(i∗) implies that 𝜇 is a cocycle:

Q𝖢𝖤𝜇 = Q𝖢𝖤i
∗(cs) = i∗(Q𝖶cs) = i∗(p) = 0. (3.7)

Let us briefly examine the above correspondence. First, we note that there is always a Chern–Simons element for any invariant
polynomial p ∈ 𝗂𝗇𝗏(𝔤) due to lemma 2.8. Second, if wemodify the cocycle𝜇 by aQ𝖢𝖤-exact term,𝜇 → �̃� = 𝜇 +Q𝖢𝖤a for some a ∈ 𝖢𝖤(𝔤),
then �̃� = i∗(cs +Q𝖶b), so c̃s = cs +Q𝖶b for any b ∈ 𝖶(𝔤) with i∗(b) = a and �̃� transgresses to the same invariant polynomial as 𝜇.
Third, if we shifted the representative p ∈ 𝗂𝗇𝗏(𝔤) according to p → p′ = p +Q𝖶q with q ∈ ker(i∗), then the Chern–Simons element
will be modified to c̃s = cs + q, but the cocycle 𝜇 remains the same as i∗(c̃s) = i∗(cs). This motivates the definition of the reduced
invariant polynomials.

3.2. Invariant Polynomials and Quasi-Isomorphisms

One of our guiding principles is that all our constructions should be agnostic about the representative of the quasi-isomorphism
class of the L∞-algebra we are using. In particular, we would expect that a quasi-isomorphism 𝜙 : �̃� → 𝔤 should lead to the following
commutative diagram:

0 𝖢𝖤(�̃�) 𝖶(�̃�) 𝗂𝗇𝗏(�̃�) 0

0 𝖢𝖤(𝔤) 𝖶(𝔤) 𝗂𝗇𝗏(𝔤) 0

ĩ∗ ẽ

Φ
i∗

Φ̂
e

Φ̄ (3.8)
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Here,Φ : 𝖢𝖤(𝔤)→ 𝖢𝖤(�̃�) is the dual of 𝜙, Φ̂ is its lift to theWeil algebras and Φ̄ the restriction to the algebras of invariant polynomials.
As 𝜙 is a quasi-isomorphism,Φ forms part of a dual quasi-isomorphism (Φ,Ψ, 𝜂Ψ ◦Φ, 𝜂Φ ◦Ψ), which can always be lifted to a dual quasi-
isomorphism (Φ̂, Ψ̂, 𝜂Ψ̂ ◦ Φ̂, 𝜂Φ̂ ◦ Ψ̂) between the Weil algebras, whereas the restrictions to Φ̄ and Ψ̄ do not necessarily form parts of a
dual quasi-isomorphism.
However, in the case that the above commutative diagram does induce a dual quasi-isomorphism (Φ̄, Ψ̄, 𝜂Ψ̄ ◦ Φ̄, 𝜂Φ̄ ◦ Ψ̄) between 𝗂𝗇𝗏(𝔤)

and 𝗂𝗇𝗏(�̃�) we would expect that there exists an induced isomorphism between the vector spaces 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̃�). The latter is indeed
the case as we shall show in the following. First, we note that Φ̂ and Ψ̂ induce vector space morphisms

Φ̂ : 𝗂𝗇𝗏(𝔤) → 𝗂𝗇𝗏(�̃�) and Ψ̂ : 𝗂𝗇𝗏(�̃�) → 𝗂𝗇𝗏(𝔤) (3.9)

on the reduced invariant polynomials: Φ̂ and Ψ̂ restrict to Φ̄ and Ψ̄ and thus, as dga-morphisms, theymap closed invariant polynomials
to closed invariant polynomials. Furthermore, as thesemaps are lifts ofΦ andΨ, respectively, they respect the kernels of the projections
i∗ and ĩ∗, i.e.

Φ̂ : ker(i∗) → ker(ĩ∗) and Ψ̂ : ker(ĩ∗) → ker(i∗). (3.10)

This, together with the fact that, as dga-morphisms, Φ̂ and Ψ̂map exact elements to exact elements, ensures that they are well-defined
on the equivalence classes of 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̃�).
It remains to show that the induced vector space morphisms are isomorphisms. We do this by showing that both Φ̂ and Ψ̂ have a

trivial kernel on the reduced invariant polynomials. The argument is the same in both cases, so we focus on Φ̂. Thus, consider the
2-morphism 𝜂Ψ̂ ◦ Φ̂ : Ψ̂ ◦ Φ̂ → id,

𝖶(𝔤) 𝗂𝗇𝗇(𝔤)[2]∗

𝖶(𝔤) 𝖶(𝗂𝗇𝗇(𝔤)) 𝖥(𝗂𝗇𝗇(𝔤)) .

𝖶(𝔤)

Ψ̂◦Φ̂
i∗

i∗

Υ

id

𝜂Ψ̂◦Φ̂
(3.11)

Let p ∈ 𝖶(𝔤) be a representative of some class [p] ∈ 𝗂𝗇𝗏(𝔤) with Φ̂(p) = 0. Let p𝖶 be p seen as an element of 𝖶(𝗂𝗇𝗇(𝔤)), and define
p𝖥 = Υ−1(p𝖶). On 𝖥(𝗂𝗇𝗇(𝔤)), we then have the identity

−p = −(id ◦ i∗ ◦Υ)(p𝖥) = Q𝖶(𝜂Ψ̂ ◦ Φ̂(p𝖥)) + 𝜂Ψ̂ ◦ Φ̂(𝜎𝖥p𝖥). (3.12)

Note that, for a general 2-morphism, neither does 𝜂Ψ̂ ◦ Φ̂(𝜎𝖥p𝖥) vanish nor is 𝜂Ψ̂ ◦ Φ̂(p𝖥) in ker(i∗). However, by assumption, there is
another 2-morphism 𝜂Ψ̄ ◦ Φ̄ : Ψ̄ ◦ Φ̄ → id,

𝗂𝗇𝗏(𝔤) 𝔤𝗂𝗇𝗏[2]∗

𝗂𝗇𝗏(𝔤) 𝖶(𝔤𝗂𝗇𝗏) 𝖥(𝔤𝗂𝗇𝗏) ,

𝗂𝗇𝗏(𝔤)

Ψ̄◦Φ̄
i∗

i∗

Υ

id

𝜂Ψ̄◦Φ̄
(3.13)

where 𝜂Ψ̄ ◦ Φ̄ := 𝜂Ψ̂ ◦ Φ̂ ◦ e. Both p𝖥 and 𝜎𝖥𝗂𝗇𝗏p𝖥 are now generators of 𝖥(𝔤𝗂𝗇𝗏) and together with Equation (2.31) it follows that

𝜂Ψ̄ ◦ Φ̄(𝜎𝖥𝗂𝗇𝗏p𝖥) = 𝜂Ψ̄ ◦ Φ̄(Q𝗂𝗇𝗏(𝔤)p𝖶) = 0, (3.14)

which implies 𝜂Ψ̂ ◦ Φ̂(𝜎𝖥p𝖥) = 𝜂Ψ̄ ◦ Φ̄(𝜎𝖥𝗂𝗇𝗏p𝖥) = 0. Additionally, as 𝜂Ψ̄ ◦ Φ̄(p𝖥) is an invariant polynomial it follows that 𝜂Ψ̂ ◦ Φ̂(p𝖥) ∈ 𝗂𝗇𝗏(𝔤) ⊂

ker i∗. Thus, on𝖶(𝔤), Equation (3.12) reduces to

p = Q𝖶(−𝜂Ψ̂ ◦ Φ̂(p𝖥)) ∈ Q𝖶(ker i
∗), (3.15)

i.e. [p] = [0] ∈ 𝗂𝗇𝗏(𝔤) and we showed the following theorem:
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Theorem 3.3. A quasi-isomorphism of L∞-algebras 𝜙 : �̃�
≊
←←←←←←←←←←←→ 𝔤 for which there exists an induced dual quasi-isomorphism (Φ̂, Ψ̂, 𝜂Ψ̂ ◦ Φ̂, 𝜂Φ̂ ◦ Ψ̂)

between the corresponding Weil algebras which restricts to a dual quasi-isomorphism between the invariant polynomials 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̃�)
induces a vector space isomorphism between 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̃�).

Let us consider a simple example of all of the above in which our compatibility condition is indeed satisfied, namely the L∞-algebra
𝔤 = 𝗂𝗇𝗇(𝔥) of some Lie algebra 𝔥,

𝔤 : 𝔥[1]
id
←←←←←←←→ 𝔥, (3.16)

which is concentrated in degrees −1 and 0. This L∞-algebra is readily seen to be quasi-isomorphic to the trivial L∞-algebra ∗: the
cohomologyH∙

𝜇1
(𝔤) is trivial and there is amorphism𝜙 : 𝔤 → ∗with𝜙1 : 𝔤→ ∗ and𝜙2 trivial, cf. (2.14).

14 The correspondingChevalley–
Eilenberg algebra 𝖢𝖤(𝔤) is generated by coordinate functions t𝛼 and r𝛼 of degree 1 and 2, respectively, with the differential acting
according to

Q𝖢𝖤 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 − r𝛼 , r𝛼 → −f 𝛼

𝛽𝛾
t𝛽r𝛾 , (3.17)

where f 𝛼
𝛽𝛾
are the structure constants of the Lie algebra structure on 𝔥. The dual of the above morphism 𝜙 corresponds to

𝖢𝖤(𝔤) 𝖢𝖤(∗)

Φ

Ψ

(3.18a)

with

Φ : t𝛼 , r𝛼 → 0 and Ψ : 0 → 0. (3.18b)

A 2-morphism 𝜂 : Ψ ◦Φ → id completing the quasi-isomorphism is given by

𝜂 : t𝛼 → 0, r𝛼 → t𝛼. (3.19)

Lifting to the Weil algebra𝖶(𝔤) yields the differential

Q𝖶 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 − r𝛼 + t̂𝛼 , r𝛼 → −f 𝛼

𝛽𝛾
t𝛽r𝛾 + r̂𝛼 ,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 + r̂𝛼 , r̂𝛼 → −f 𝛼

𝛽𝛾
t𝛽 r̂𝛾 + f 𝛼

𝛽𝛾
t̂𝛽r𝛾 ,

(3.20)

and morphisms

Φ̂ : t𝛼 , r𝛼 , t̂𝛼 , r̂𝛼 → 0 and Ψ : 0 → 0, (3.21)

as well as the 2-morphism 𝜂 : Ψ̂ ◦ Φ̂ → id given by the map

𝜂 : t𝛼 → 0, r𝛼 → t𝛼 ,

t̂𝛼 → 0, r̂𝛼 → −t̂𝛼.
(3.22)

One readily checks that

(Q𝖶 ◦ 𝜂𝖶 + 𝜂𝖶 ◦Q𝖥)(a) = −a = (Ψ̂ ◦ Φ̂ − id)(a) (3.23)

for elements a ∈ 𝖥(𝗂𝗇𝗇(𝔤)).
To conclude that this dual quasi-isomorphism restricts to a dual quasi-isomorphismon 𝗂𝗇𝗏(𝔤) we need to check that 𝜂(𝗂𝗇𝗏(𝔤)) ⊂ 𝗂𝗇𝗏(𝔤).

Comparing degrees, it is easy to see that a generic invariant polynomial consists of sums of invariant polynomials of the form

p = p𝛼1…𝛼n𝛽1…𝛽m
t̂𝛼1 … t̂𝛼n r̂𝛽1 … r̂𝛽m , (3.24)

where p𝛼1…𝛼n𝛽1…𝛽m
∈ ℝ, n,m ∈ ℕ. The condition that Q𝖶p ∈ 𝖶h(𝔤) together with (3.20) implies that

n∑
i=1

p𝛼1…�̂�i…𝛼n𝛽1…𝛽m
f 𝜌
𝛼i𝜈

+
m∑
i=1

p𝛼1…𝛼n𝛽1…𝛽i…𝛽m
f 𝜌

𝛽i𝜈
= 0, (3.25)

14 Note also that 𝖢𝖤(𝔤) = 𝖶(𝔥) ≊ 𝖶(∗), where the dual isomorphism merely inverts the signs of the coordinate functions.
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such that we have

Q𝖶p = np𝛼1…𝛼n𝛽1…𝛽m
t̂𝛼1 … t̂𝛼n−1 r̂𝛼n r̂𝛽1 … r̂𝛽m . (3.26)

Applying the 2-morphism in (3.22) to p we obtain

𝜂(p) = − m
n+m

p𝛼1…𝛼n𝛽1…𝛽m
t̂𝛼1 … t̂𝛼n t̂𝛽1 r̂𝛽2 … r̂𝛽m , (3.27)

which due to the identity (3.25) again forms an invariant polynomial. Thus, we arrive at the following proposition:

Proposition 3.4. The dual quasi-isomorphism (3.18) induces a dual quasi-isomorphism between the dga of invariant polynomials 𝗂𝗇𝗏(𝔤), where
𝔤 is defined in (3.16), and the dga of invariant polynomials 𝗂𝗇𝗏(∗) =∗.

Together with theorem 3.3, we then have an expected corollary:

Corollary 3.5. The vector space 𝗂𝗇𝗏(𝔤) is the trivial vector space.

Explicitly, one can show that 𝜂 in (3.27) acts as the inverse ofQ𝖶 on 𝗂𝗇𝗏(𝔤). Thus, anyQ𝖶-closed element p in𝖶h(𝔤) is automatically
Q𝖶-exact in𝖶h(𝔤),

Q𝖶𝜂(p) = − m
n+m

p𝛼1…𝛼n𝛽1…𝛽m
t̂𝛼1 … t̂𝛼n r̂𝛽1 … r̂𝛽m ∝ p, (3.28)

rendering 𝗂𝗇𝗏(𝔤) the trivial vector space.

3.3. Adjusted Weil Algebras of �̂�sk and 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)

Unfortunately, dual quasi-isomorphisms between Chevalley–Eilenberg algebras do not induce dual quasi-isomorphisms between the
dgas of invariant polynomials in general. This may not be surprising because the Weil algebra, which sits between both dgas in the
complex (3.4), is always dually quasi-isomorphic to the trivial one. There is, in fact, some freedom in constructing a suitable Weil
algebra sitting above the Chevalley–Eilenberg algebra, leading to what we will call an adjusted Weil algebra.
As an example, let 𝔤 be some Lie algebra and consider the quasi-isomorphic Lie 3-algebra �̂�sk introduced in Section 2.6. The Weil

algebra of �̂�sk is given by the differential acting on generators as

Q𝖶 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , r → 1

3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + q + r̂, q → q̂,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 , r̂ → − 1

2
f𝛼𝛽𝛾 t

𝛼t𝛽 t̂𝛾 − q̂, q̂ → 0,
(3.29)

where t𝛼 ∈ 𝔤∗t [1], r ∈ ℝ∗
r [1] and q ∈ ℝ∗

q [1] are the coordinate functions on the shifted graded vector space underlying �̂�sk and t̂
𝛼 , r̂, q̂ are

the additional copies introduced for the Weil algebra.
The dual quasi-isomorphism (2.63) between the Chevalley–Eilenberg algebras of �̂�sk and 𝔤 induces the dual quasi-isomorphism

𝖶(�̂�sk) 𝖶(𝔤)

Φ̂

Ψ̂

, (3.30a)

Φ̂ : t𝛼 → t̃𝛼 , r → 0, q → − 1
3!
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 ,

t̂𝛼 → ̂̃t𝛼 , r̂ → 0, q̂ → − 1
2
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 ̂̃t𝛾 ,

Ψ̂ : t̃𝛼 → t𝛼 , ̂̃t𝛼 → t̂𝛼

(3.30b)

with 𝜂Φ̂ ◦ Ψ̂ : Φ̂ ◦ Ψ̂⇒ id trivial and the connecting 2-morphism 𝜂Ψ̂ ◦ Φ̂ : Ψ̂ ◦ Φ̂ ⇒ id fixed by

𝜂Ψ̂ ◦ Φ̂ : t𝛼 → 0, r → 0, q → −r,

t̂𝛼 → 0, r̂ → 0, q̂ → r̂.
(3.30c)

Here, t̃𝛼 and ̂̃t𝛼 are the evident generators of𝖶(𝔤), cf. (2.18).
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Clearly, the dual quasi-isomorphism (3.30) is problematic since it maps the invariant polynomial q̂ to the element Φ(q̂) =
− 1

2
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 ̂̃t𝛾 ∉ 𝖶h. A quick computation15 reveals that the dual quasi-isomorphism between 𝖢𝖤(�̂�sk) and 𝖢𝖤(𝔤) does not allow for
a deformation that solves the issue.
We therefore have to deform the Weil algebra 𝖶(�̂�sk) to an adjusted Weil algebra 𝖶adj(�̂�sk) such that (3.8) with �̃� = �̂�sk becomes a

commutative diagram. Note that we cannot change the Chevalley–Eilenberg algebras on which the Weil algebras in (3.30a) project or
the relating morphisms between them, since this would amount to changing the underlying Lie 3-algebra �̂�sk.
In general, such an adjustment is not unique, but we impose a number of simplifying constraints which fix it. First, we choose to

preserve the embedding𝖶(ℝ[2])→𝖶(�̂�sk) induced by the sequence (2.59), which fixes

Q𝖶adj
q = q̂, Q𝖶adj

q̂ = 0. (3.31)

This is essentially a choice of coordinates. Second, we choose Φ(q̂) = 1
2
𝗉1, where

1
2
𝗉1 is the first fractional Pontryagin class to which

the Chevalley–Eilenberg cocycle 𝜇 transgresses:

cs := − 1
3! f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 + 𝜅𝛼𝛽 t̃
𝛼̂̃t𝛽

𝜇 := − 1
3! f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 1
2
𝗉1 := 𝜅𝛼𝛽

̂̃t𝛼̂̃t𝛽

i∗ Q𝖶
(3.32)

This induces the adjustment

𝖢𝖤(�̂�sk) 𝖶(�̂�sk)

𝖢𝖤(𝔤) 𝖶(𝔤)

(i∗◦Φ)(q)=𝜇

i∗

Φ(q) = 𝜇

Φ(q̂) = − 1
2
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 ̂̃t𝛾

i∗

←→

𝖢𝖤(�̂�sk) 𝖶adj(�̂�sk)

𝖢𝖤(𝔤) 𝖶(𝔤)

(i∗◦Φ)(q)=𝜇

i∗

Φadj(q) = cs

Φadj(q̂) =
1
2
𝗉1

i∗

(3.33)

which ensures that invariant polynomials in𝖶adj(�̂�sk) are mapped to invariant polynomials in𝖶(𝔤) and vice versa. We note, however,
that 𝜅𝛼𝛽 t̂

𝛼 t̂𝛽 − q̂ is now in the kernel of Φadj, so it should trivialize in𝖶adj(�̂�sk), which fixes

Q𝖶adj
r̂ = 𝜅𝛼𝛽 t̂

𝛼 t̂𝛽 − q̂, (3.34)

up to an isomorphic choice of the generator r̂. Finally, we also demand that Q𝖶adj
t𝛼 = Q𝖶t

𝛼 . This is enough to completely fix Q𝖶adj
:

Definition 3.6. The adjusted Weil algebra𝖶adj(�̂�sk) has the same generators as𝖶(�̂�sk) with the differential Q𝖶adj
acting as

Q𝖶adj
: t𝛼 → − 1

2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , r → 1

3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 − 𝜅𝛼𝛽 t
𝛼 t̂𝛽 + q + r̂, q → q̂,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 , r̂ → 𝜅𝛼𝛽 t̂

𝛼 t̂𝛽 − q̂, q̂ → 0.

(3.35)

In the adjusted case, the dual quasi-isomorphism reads as

𝖶adj(�̂�sk) 𝖶(𝔤)

Φadj

Ψadj

, (3.36a)

Φadj : t𝛼 → t̃𝛼 , r → 0, q → cs,

t̂𝛼 → ̂̃t𝛼 , r̂ → 0, q̂ → 1
2
𝗉1,

Ψadj : t̃𝛼 → t𝛼 , ̂̃t𝛼 → t̂𝛼 ,

(3.36b)

15 This and the following computations are best done using a computer algebra program.
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where Q̃𝖶 ◦Φadj = Φadj ◦Q𝖶adj
and Q𝖶adj

◦Ψadj = Ψadj ◦ Q̃𝖶 as well as Φadj ◦Ψadj = id and unmodified 𝜂adj : Ψadj ◦Φadj → id:

𝜂adj : t𝛼 → 0, r → 0, q → −r,

t̂𝛼 → 0, r̂ → 0, q̂ → r̂.
(3.36c)

We note that the dual quasi-isomorphism (Φadj,Ψadj, 𝜂adj, 0) : 𝖶adj(�̂�sk)→ 𝖶(𝔤) implies that also 𝖶adj(�̂�sk) and 𝖶(�̂�sk) are dually
quasi-isomorphic. Moreover, the projection i∗ to the Chevalley–Eilenberg algebra is the same for both ordinary and adjusted Weil al-
gebra.
Let us now show that with the adjusted Weil algebra𝖶adj(�̂�sk), the diagram (3.8) is indeed commutative and 𝗂𝗇𝗏adj(�̂�sk) ≊ 𝗂𝗇𝗏(𝔤). We

first note that

(3.37)

that is, Φadj and Ψadj indeed restrict to morphisms between the dgas of invariant polynomials. Moreover, Φadj ◦Ψadj restricts to id𝗂𝗇𝗏(𝔤)
and therefore it remains to show that 𝜂adj restricts to a 2-morphism 𝜂adj : Ψadj ◦Φadj → id𝗂𝗇𝗏adj(�̂�sk) on the generators of 𝗂𝗇𝗏adj(�̂�sk). Obvi-
ously, 𝗂𝗇𝗏adj(�̂�sk) ≅ 𝗂𝗇𝗏(𝔤)[r̂, q̂], that is, 𝗂𝗇𝗏adj(�̂�sk) consists of polynomials in r̂ and q̂ with coefficients in 𝗂𝗇𝗏(𝔤). We note that

(Ψadj ◦Φadj − id𝗂𝗇𝗏(�̂�sk))(p) = 0 = (Q𝖶adj
◦ 𝜂adj + 𝜂adj ◦Q𝖶adj

)(p),

(Ψadj ◦Φadj − id𝗂𝗇𝗏(�̂�sk))(r̂) = −r̂ = (Q𝖶adj
◦ 𝜂adj + 𝜂adj ◦Q𝖶adj

)(r̂),

(Ψadj ◦Φadj − id𝗂𝗇𝗏(�̂�sk))(q̂) =
1
2
𝜅𝛼𝛽 t̂

𝛼 t̂𝛽 − q̂ = (Q𝖶adj
◦ 𝜂adj + 𝜂adj ◦Q𝖶adj

)(q̂),

(3.38)

where p denotes invariant polynomials not containing r̂ or q̂, i.e. all other generators of 𝗂𝗇𝗏adj(�̂�sk). Together with theorem 3.3, we then
have the following result:

Theorem 3.7. The dgas 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏adj(�̂�sk) are quasi-isomorphic and the vector spaces 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏adj(�̂�sk) are isomorphic.

Note that this is important if we want to model the string Lie 2-algebra as an L∞-subalgebra of �̂�sk as in Equation (2.59). It shows
in particular, that𝖶(�̂�sk) is problematic, while𝖶adj(�̂�sk), when factored by the differential ideal generated by q and q̂, becomes a good
model for the Weil algebra of 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤).

3.4. Adjusted Weil Algebras of �̂�lp and 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)

Because we shall require it later on, let us also give the explicit formulas for the Lie 3-algebra �̂�lp involving path and loop spaces
quasi-isomorphic to 𝔤. Here we have

�̂�lp :=
(
ℝq ←←←←→ L̂0𝔤r ←→ P0𝔤

)
:=

(
ℝ[2] ←←←←→ L̂0𝔤[1] ←→ P0𝔤

)
≊

(
L0𝔤[1] ←→ P0𝔤

)
≊ 𝔤. (3.39)

The Weil algebra𝖶(�̂�lp) has the generators of𝖶(𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)), cf. (2.49), as well as the coordinate functions q and q̂ of degrees 3 and 4
and the differential acts according to

Q𝖶 : t𝛼𝜏 → − 1
2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 + t̂𝛼𝜏 , t̂𝛼𝜏 → −f 𝛼

𝛽𝛾
t𝛽𝜏 t̂𝛾𝜏 + r̂𝛼𝜏 ,

r𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏r𝛾𝜏 + r̂𝛼𝜏 , r̂𝛼𝜏 → −f 𝛼

𝛽𝛾
t𝛽𝜏 r̂𝛾𝜏 + f 𝛼

𝛽𝛾
t̂𝛽𝜏r𝛾𝜏 ,

r0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + q + r̂0, r̂0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽

(
t𝛼𝜏 ̇̂r𝛽𝜏 − t̂𝛼𝜏 ṙ𝛽𝜏

)
− q̂,

q → q̂, q̂ → 0.

(3.40)

The endpoint evaluation map 𝜕 and the smooth function 𝓁 from (2.51) yield projections and embeddings,

�̂�lp ←←←←←←←←←←→ P0𝔤
𝜕
←←←←←←←←←←→ 𝔤 and 𝔤

⋅𝓁(𝜏)
←←←←←←←←←←←←←←←←→ P0𝔤 ←←←←←←←←←←←←←→ �̂�lp. (3.41)
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Dually, we have embeddings and projections on the Chevalley–Eilenberg algebras of �̂�lp and 𝔤, which form a dual quasi-isomorphism.
Lifted to the Weil algebra, it reads as

𝖶(�̂�lp) 𝖶(𝔤)

Φ

Ψ

, (3.42a)

Φ : t𝛼𝜏 → 𝓁(𝜏)t̃𝛼 , r𝛼𝜏 → (𝓁(𝜏) − 𝓁2(𝜏)) 1
2
f 𝛼
𝛽𝛾
t̃𝛽 t̃𝛾 , r0 → 0, q → 1

3!
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 ,

t̂𝛼𝜏 → 𝓁(𝜏)̂̃t𝛼 , r̂𝛼𝜏 → −(𝓁(𝜏) − 𝓁2(𝜏))f 𝛼
𝛽𝛾
t̃𝛽 ̂̃t𝛾 , r̂0 → 0, q̂ → 1

2
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 ̂̃t𝛾 ,

Ψ : t̃𝛼 → t𝛼1, ̂̃t𝛼 → t̂𝛼1,

(3.42b)

where t̃𝛼 and ̂̃t𝛼 are again the generators of𝖶(𝔤). A 2-morphism 𝜂 : Ψ ◦Φ → id is given by the map 𝜂 : 𝖶(𝗂𝗇𝗇(�̂�lp))→ 𝖶(�̂�lp) with

𝜂 : t𝛼𝜏 , r0 → 0, r𝛼𝜏 → t𝛼𝜏 − 𝓁(𝜏)t𝛼1, q → −r0 − ∫
1

0
d𝜏 𝜅𝛼𝛽 ṫ

𝛼𝜏 t𝛽𝜏 ,

t̂𝛼𝜏 , r̂0 → 0, r̂𝛼𝜏 → 𝓁(𝜏)t̂𝛼1 − t̂𝛼𝜏 , q̂ → r̂0 − ∫
1

0
d𝜏 𝜅𝛼𝛽

(
ṫ𝛼𝜏 t̂𝛽𝜏 − ̇̂t𝛼𝜏 t𝛽𝜏

)
.

(3.42c)

Note that this dual quasi-isomorphism is merely a composition of the dual quasi-isomorphism (3.30) and the lift of (2.56) to the Weil
algebras of �̂�sk and �̂�lp. This observation allows us to derive the corresponding adjusted Weil algebra. Up to trivial isomorphisms, we
arrive at the following definition:

Definition 3.8. The adjusted Weil algebra𝖶adj(�̂�lp) has the same generators as𝖶(�̂�lp) with the differential Q𝖶adj
acting as

Q𝖶adj
: t𝛼𝜏 → − 1

2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 + t̂𝛼𝜏 , t̂𝛼𝜏 → −f 𝛼

𝛽𝛾
t𝛽𝜏 t̂𝛾𝜏 + 𝜒𝛼𝜏 (t, t̂) + r̂𝛼𝜏 ,

r𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏r𝛾𝜏 + 𝜒𝛼𝜏 (t, t̂) + r̂𝛼𝜏 , r̂𝛼𝜏 → 0,

r0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + 𝜒(t, t̂) + q + r̂0 r̂0 → −𝜒(t̂, t̂) − q̂,

q → q̂, q̂ → 0,

(3.43a)

where

𝜒𝛼𝜏 (t, t̂) := f 𝛼
𝛽𝛾
(t𝛽𝜏 t̂𝛾𝜏 − 𝓁(𝜏)t𝛽1 t̂𝛾1) and 𝜒(t, t̂) := 2∫

1

0
d𝜏 𝜅𝛼𝛽 ṫ

𝛼𝜏 t̂𝛽𝜏 . (3.43b)

The quasi-isomorphism reads as

𝖶adj(�̂�lp) 𝖶(𝔤)

Φadj

Ψadj

(3.44a)

Φadj : t𝛼𝜏 → 𝓁(𝜏)t̃𝛼 , r𝛼𝜏 → (𝓁(𝜏) − 𝓁2(𝜏)) 1
2
f 𝛼
𝛽𝛾
t̃𝛽 t̃𝛾 , r0 → 0, q → −cs,

t̂𝛼𝜏 → 𝓁(𝜏)̂̃t𝛼 , r̂𝛼𝜏 → 0, r̂0 → 0, q̂ → − 1
2
𝗉1,

Ψadj : t̃𝛼 → t𝛼1, ̂̃t𝛼 → t̂𝛼1,

(3.44b)
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where Q̃𝖶 ◦Φadj = Φadj ◦Q𝖶adj
and Q𝖶adj

◦Ψadj = Ψadj ◦ Q̃𝖶 as well as Φadj ◦Ψadj = id and 𝜂adj : Ψadj ◦Φadj → id:

𝜂adj : t
𝛼𝜏 , r0 → 0, r𝛼𝜏 → t𝛼𝜏 − 𝓁(𝜏)t𝛼1, q → −r0 − ∫

1

0
d𝜏 𝜅𝛼𝛽 ṫ

𝛼𝜏 t̂𝛽𝜏 ,

t̂𝛼𝜏 , r̂0 → 0, r̂𝛼𝜏 → 𝓁(𝜏)t̂𝛼1 − t̂𝛼𝜏 , q̂ → r̂0.

(3.44c)

Note that Φadj, Ψadj and 𝜂adj in the quasi-isomorphism (3.44) restrict to maps between horizontal elements and therefore the same
arguments as in the skeletal case apply:

Proposition 3.9. The differential graded algebras 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̂�lp) are quasi-isomorphic and the vector spaces 𝗂𝗇𝗏(𝔤) and 𝗂𝗇𝗏(�̂�lp) are isomor-
phic.

Finally, we note that the above adjustment in the loop case mirrors the adjustment of the skeletal case in that it consists of
replacing

Q𝖶r → Q𝖶adj
r :=Q𝖶r ∓ 𝜒(t, t̂),

Q𝖶 r̂ → Q𝖶adj
r̂ := ± 𝜒(t̂, t̂) − q̂,

(3.45)

where in the skeletal case 𝜒 corresponds to the Killing form and in the loop case 𝜒 is given in (3.43b). The corresponding functions
𝜒sk and 𝜒lp on the dual L∞-algebras are related to the cocycles that are trivialized in 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤) and 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤), respectively, via
𝜒sk ◦𝜇2 = 𝜇3 and 𝜒lp ◦𝜇1 = 𝜇2.

3.5. Adjusted Weil Algebra of a General Lie 2-Algebra

An obvious question is now whether the string Lie 2-algebra plays a special role, or whether one can define adjusted Weil algebras
leading to compatibility of invariant polynomials with quasi-isomorphisms in general. The evident generalization of (2.59) for a general
Lie 2-algebra 𝔤 = (𝔤−1 → 𝔤0) is to use the decomposition (2.43) and consider the short exact sequence of L∞-algebras

0 ←→ (𝔤0−1 → 𝔤00) → �̂�00 := (𝔤0−1[1] → 𝔤−1 → 𝔤0) ←→ (𝔤0−1 → ∗→ ∗) ←→ 0 (3.46)

with �̂�00 ≊ 𝔤00. Explicitly, we have the following decomposition:

𝔤0−1[1] 𝔤0−1 𝔤00
⊕ ⊕

𝔤1−1 𝔤10

𝜇1=id

𝜇1=id
(3.47)

with corresponding coordinate functions t𝛼 ∈ 𝔤00, t
a ∈ 𝔤10, r

i ∈ 𝔤0−1, r
a ∈ 𝔤1−1 and q

i ∈ 𝔤0−1[1] of degrees 0, 0, 1, 1 and 2, respectively. The
(unadjusted) Weil algebra reads as

Q𝖶 : t𝛼 → − 1
2
𝜇𝛼

𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , ta → −ra + t̂a,

ri → 1
3!

𝜇i
𝛼𝛽𝛾

t𝛼t𝛽 t𝛾 − 𝜇i
𝛼jt

𝛼rj + qi + r̂i, ra → r̂a,

qi → −𝜇i
𝛼jt

𝛼qj + q̂i,

t̂𝛼 → −𝜇𝛼
𝛽𝛾
t𝛽 t̂𝛾 , t̂a → r̂a,

r̂i → − 1
2
𝜇i

𝛼𝛽𝛾
t𝛼t𝛽 t̂𝛾 − 𝜇i

𝛼jt
𝛼 r̂j + 𝜇i

𝛼j t̂
𝛼rj − q̂i, r̂a → 0,

q̂i → −𝜇i
𝛼jt

𝛼 q̂j + 𝜇i
𝛼j t̂

𝛼qj,

(3.48)

Fortschr. Phys. 2020, 2000051 2000051 (23 of 48) © 2020 The Authors. Fortschritte der Physik published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

and the dual quasi-isomorphism to𝖶(𝔤00) is given by maps

(3.49a)

Φ̂ : t𝛼 → t̃𝛼 , ta, ri, ra → 0, qi → − 1
3!

𝜇i
𝛼𝛽𝛾

t̃𝛼 t̃𝛽 t̃𝛾 ,

t̂𝛼 → ̂̃t𝛼 , t̂a, r̂i, r̂a → 0, q̂i → − 1
2
𝜇i

𝛼𝛽𝛾
t̃𝛼 t̃𝛽 ̂̃t𝛾 ,

Ψ̂ : t̃𝛼 → t𝛼 , ̂̃t𝛼 → t̂𝛼 ,

𝜂Ψ̂ ◦ Φ̂ : t𝛼 , ta, ri → 0, ra → ta, qi → −ri,

t̂𝛼 , t̂a, r̂i → 0, r̂a → −t̂a, q̂i → r̂i.

(3.49b)

As in the example (3.30), the quasi-isomorphism Φ does not restrict to a map Φ : 𝖶h(�̂�00) → 𝖶h(𝔤00) and the unadjusted Weil algebra
is not suitable for a definition of invariant polynomials.
An adjusted form𝖶adj(�̂�00) of the Weil algebra is readily found:

Q𝖶adj
: t𝛼 → − 1

2
𝜇𝛼

𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , ta → −ra + t̂a,

ri → 1
3!

𝜇i
𝛼𝛽𝛾

t𝛼t𝛽 t𝛾 − 𝜇i
𝛼jt

𝛼rj + qi + r̂i, ra → r̂a,

qi → −𝜇i
𝛼jt

𝛼qj − 1
2
𝜇i

𝛼𝛽𝛾
t𝛼t𝛽 t̂𝛾 − 𝜇i

𝛼j t̂
𝛼rj + q̂,

t̂𝛼 → −𝜇𝛼
𝛽𝛾
t𝛽 t̂𝛾 , t̂a → r̂a,

r̂i → −𝜇i
𝛼jt

𝛼 r̂j − q̂i, r̂a → 0,

q̂i → −𝜇i
𝛼jt

𝛼 q̂j + 𝜇i
𝛼j t̂

𝛼 r̂j,

(3.50)

and the dual quasi-isomorphism to𝖶(𝔤00) is given by maps

(3.51a)

Φadj : t𝛼 → t̃𝛼 , ta, ri, ra → 0, qi → − 1
3!

𝜇i
𝛼𝛽𝛾

t̃𝛼 t̃𝛽 t̃𝛾 ,

t̂𝛼 → ̂̃t𝛼 , t̂a, r̂i, r̂a → 0, q̂i → 0,

Ψadj : t̃𝛼 → t𝛼 , ̂̃t𝛼 → t̂𝛼 ,

𝜂adj : t𝛼 , ta, ri → 0, ra → ta, qi → −ri,

t̂𝛼 , t̂a, r̂i → 0, r̂a → −t̂a, q̂i → r̂i.

(3.51b)

Here, we indeed have the restriction Φadj : 𝖶adj,h(�̂�00) → 𝖶h(𝔤00), a necessary condition for compatibility of the quasi-isomorphism
with the dga of invariant polynomials. Note that contrary to the adjusted Weil algebra 𝖶adj(�̂�sk), however, qi and q̂i do not generate
a differential ideal, in general. In particular, Q𝖶adj

does not close on the subspace generated by qi and q̂i. The reduction of �̂�00 to
the Lie 2-algebra 𝔤, which would correspond to quotienting the Weil algebra of �̂�00 by this non-existing differential ideal is therefore
not possible.
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Without additional structure on 𝔤00, there is no other adjustment or quasi-isomorphism that leads to the desired differential ideal.
We thus recognize that the string Lie 2-algebra is special as a Lie 2-algebra in that it admits an adjusted Weil algebra.

4. Higher Gauge Theory

We now come to the discussion of higher gauge theory based on the structures introduced in the previous sections. The framework
we use is based on ideas due to H. Cartan[18,19] and it is closely related to the Atiyah algebroid[44] and the Alexandrov, Kontsevich,
Schwarz, Zaboronsky (AKSZ) construction.[45] It was rediscovered in various forms and extended to higher form gauge potentials in
the context of high-energy physics,[46–50] and then extended to a rather full picture for higher gauge theory in [17], cf. also [51].

4.1. Basic Idea

The local kinematical data of a gauge theory on some contractible patchU of a space-timemanifold with structure or gauge Lie algebra
𝔤 consists of a 𝔤-valued one-form A ∈ Ω1(U, 𝔤) called the gauge potential, its curvature F ∈ Ω2(U, 𝔤), which satisfies a Bianchi identity,
and a Lie algebra of (infinitesimal) gauge transformations which act on A and F. In higher gauge theories, we have correspondingly
higher differential forms taking values in higher Lie algebras modeled by L∞-algebras.
The language of Chevalley–Eilenberg algebras introduced above presents a gauge L∞-algebras in terms of a differential graded

algebra, putting them on equal footing with the other key ingredient in the kinematical data of a gauge theory, the differential forms.
This unifying framework leads to a formulation of the local description of a gauge theory in terms of morphisms of differential graded
algebras, which can be generalized vastly.
We now go through a reformulation of the kinematical data of ordinary gauge theories, which is readily extended to higher gauge

theories. Explicitly, letU be a contractible patch of our space-time and let 𝔤 be an ordinary Lie algebra, as above.We use again coordinate
functions t𝛼 and t̂𝛼 on theWeil algebra𝖶(𝔤), cf. Equation (2.18). The local kinematical data of a gauge theory with structure Lie algebra
𝔤 on U is given by a dga-morphism16

Ω∙(U)

←← 𝖶(𝔤),

 : t𝛼 → A𝛼 ∈ Ω1(U), t̂𝛼 → F𝛼 ∈ Ω2(U).
(4.1)

Compatibility with the differentials in both dgas, d ◦ =  ◦Q , implies that

F𝛼 = dA𝛼 + 1
2
f 𝛼
𝛽𝛾
A𝛽A𝛾 and dF𝛼 = −f 𝛼

𝛽𝛾
A𝛽F𝛾 . (4.2)

We thus recovered the gauge potential, its curvature and the corresponding Bianchi identity. Note that if had we merely considered
morphisms : 𝖢𝖤(𝔤) → Ω∙(U), we would have only recovered flat connections.
Gauge transformations are encoded in flat homotopies between two such gauge configurations,[52] i.e. in dga-morphisms

Ω∙(U × I)

←←𝖶(𝔤), (4.3)

where I = [0, 1] denotes the interval and flatness means that F̌ vanishes when contracted with vector fields along I. The differential
on Ω∙(U × I) is given by dU×I = dU + d𝜏

𝜕

𝜕𝜏
, where 𝜏 is the additional coordinate on I, and we have the morphism

̌ : t𝛼 → A𝛼 + Λ𝛼
0d𝜏 ∈ Ω1(U) ⊕ Ω1(I), t̂𝛼 → F𝛼

U ∈ Ω2(U). (4.4)

The infinitesimal gauge transformations are then parametrized by Λ0 ∈ Ω0(U) ⊗ 𝔤 and act according to

𝛿A𝛼 = 𝜕

𝜕𝜏
Ǎ𝛼|𝜏=0 and 𝛿F𝛼 = 𝜕

𝜕𝜏
F̌𝛼|𝜏=0. (4.5)

The compatibility of ̌ with dU×I and Q yields

𝛿A𝛼 = dΛ𝛼
0 + f 𝛼

𝛽𝛾
A𝛽Λ𝛾

0 and 𝛿F𝛼 = f 𝛼
𝛽𝛾
F𝛽Λ𝛾

0. (4.6)

Therefore, the gauge transformations of A and F are determined by the expression for F and the form of the Bianchi identity.

16 The set Ω∙(U) is the Chevalley–Eilenberg algebra of the tangent algebroid T [1]U and it can also be regarded as the Weil algebra of the trivial Lie
algebroid U so that : 𝖶(𝔤)→ 𝖶(U).
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Finally, note that an invariant polynomial p ∈ 𝗂𝗇𝗏(𝔤) ⊂ 𝖶h(𝔤) is mapped to a polynomial(p) in the curvature F, and the condition
Q𝖶p = q ∈ 𝖶h(𝔤) ensures that d(p) is again a polynomial(q) in F, which implies that(p) is gauge invariant:

𝛿(p) = 𝜕

𝜕𝜏
̌(p)|𝜏=0 = 𝜄 𝜕

𝜕𝜏
̌(q)|𝜏=0 = 0. (4.7)

That is, the topological observables are the images of the invariant polynomials 𝗂𝗇𝗏(𝔤) under . The topological invariants are the
images of 𝗂𝗇𝗏(𝔤).

4.2. BRST Complex from an AKSZ-like Construction

Let us provide a convenient and closely related description of local 𝔤-connection objects which follows the Alexandrov, Kontsevich,
Schwarz, Zaboronsky (AKSZ) construction.[45] The advantage of this construction is that we obtain the full gauge algebroid rather
directly, in the form of a BRST complex. Mathematically, we construct the Chevalley–Eilenberg algebra of the gauge L∞-algebroid of
the kinematical data, cf. e.g. the discussion in [20, 53].
Recall that the input data of the AKSZ construction consists of two differential graded manifolds, the source (Σ, dΣ) and the target

(X, dX ), where the source is endowed with an additional measure 𝜇 and the target is endowed with a symplectic form 𝜔. The space
of fields is the space of not necessarily grade preserving maps 𝒜 ∈ 𝖬𝖺𝗉(Σ, X ), which carry a ℤ-grading and contain the morphisms of
graded manifolds 𝖧𝗈𝗆(Σ, X) in degree 0, see e.g. [54, Section 5.1] for more details on this point. To restore compatibility with the
grading, one introduces the ghost degree, as discussed in more detail in the example below. The measure 𝜇 and the symplectic form
𝜔 induce a symplectic structure on 𝖬𝖺𝗉(Σ, X) and the differentials on Σ and X linearly combine to a differential on the graded space
𝖬𝖺𝗉(Σ, X), which is Hamiltonian with respect to the Poisson bracket induced by 𝜔 on𝖬𝖺𝗉(Σ, X ). We thus obtain the BV complex of a
field theory. This structure induces an action for a topological field theory and different choices of Σ and X lead e.g. to Chern–Simons
theory and its higher variants, to BF-theories, Poisson-sigma models, etc. Since we are merely interested in the kinematical data, this
part of the AKSZ construction is irrelevant for us.
Instead, let us construct the Chevalley–Eilenberg algebra of the gauge L∞-algebroid of local 𝔤-connection objects for some L∞-

algebra 𝔤. This is usually called the BRST complex. Recall that the gauge L∞-algebroid consists of the fields, the (higher) Lie algebra
of (higher) gauge transformations and the higher products encode the actions of gauge transformations on the fields as well as the
compositions of (higher) gauge transformations.
Since we are merely interested in local gauge theories, we choose Σ = T [1]U for U some contractible patch of our manifoldM. As

target X for topological 𝔤-connections, one would usually take the dg-manifold 𝔤[1] corresponding to the L∞-algebra 𝔤. This will yield
flat connections, asmentioned previously in Section 4.1. For our purposes, we enlarge17 X to the dg-manifold 𝗂𝗇𝗇(𝔤)[1] corresponding to
𝗂𝗇𝗇(𝔤). Themorphisms of dg-manifolds Σ→ X are now precisely the duals of themorphisms𝖶(𝔤)→ Ω∙(U) and encode 𝔤-connection
objects, as discussed above.
If X = 𝔤[1] was the dg-manifold corresponding to 𝔤, we would recover the BV complex of a corresponding AKSZ model from the

general morphisms𝖬𝖺𝗉(Σ, X). Recall that we are only interested in the kinematical data and its gauge transformation, i.e. the BRST
complex contained in the BV complex. We therefore put all generators corresponding to antifields (as well as antifields of ghosts and
higher ghosts) to zero, as they encode equations of motion and corresponding Noether identities, cf. [20]. We also have to put to zero
the generators corresponding to additional gauge parameters arising from doubling 𝔤[1] to 𝗂𝗇𝗇(𝔤)[1]. The result is the BRST complex
encoding the kinematical data of our gauge theory.
Let us illustrate this for ordinary gauge theory with 𝔤 an ordinary Lie algebra. We thus consider maps

𝒜 : 𝖶(𝔤)→ Ω∙(U), (4.8)

which describe 𝔤-valued differential forms on U, and we decompose them according to the form degree of the image:

𝒜(t𝛼) = Λ𝛼
0 + A𝛼 + A+𝛼 + Λ+𝛼

0 +… ,

𝒜(t̂𝛼) = 𝜗𝛼
0 + 𝜗𝛼

1 + F𝛼 + F+𝛼 +… .
(4.9)

To preserve the grading, we associate an additional degree called ghost degree to each component and call the resulting space𝖬𝖺𝗉(Σ, X).
The components then have the following interpretation:

17 The same enlarged target was considered in [51] but with a focus on maps of degree 0.
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component form degree ghost degree interpretation

Λ0 0 1 ghost or gauge parameter

A 1 0 local gauge potential 1-form

A+ 2 −1 antifield of A, put to zero

Λ+
0 3 −2 antifield of Λ0, put to zero

𝜗𝛼
0 0 2 additional gauge parameter, put to zero

𝜗𝛼
1 1 1 additional gauge parameter, put to zero

F 2 0 curvature of A

F+ 3 −1 antifield of F, put to zero

As usual in the AKSZ-formalism, QBRST on 𝖬𝖺𝗉(Σ, X) is induced by a linear combination of the precomposition of the map with
Q𝖶 and the postcomposition of the map with the de Rham differential d:

QBRST𝒜 := d ◦𝒜 −𝒜◦Q𝖶, 𝒜 ∈ 𝖬𝖺𝗉(Σ, X). (4.10)

Decomposing again by form degree, we obtain

QBRST : Λ𝛼
0 →

1
2
f 𝛼
𝛽𝛾
Λ𝛽

0Λ
𝛾

0 − 𝜗𝛼
0 ,

A𝛼 → dΛ𝛼
0 + f 𝛼

𝛽𝛾
A𝛽Λ𝛾

0 − 𝜗𝛼
1 ,

A+𝛼 → dA𝛼 + f 𝛼
𝛽𝛾
(Λ𝛽

0A
+𝛾 + 1

2
A𝛽A𝛾 ) − F𝛼 ,

Λ+𝛼
0 → dA+𝛼 + f 𝛼

𝛽𝛾
(Λ𝛽

0Λ
+𝛾

0 + A𝛽A+𝛾 ) − F+𝛼 ,

𝜗𝛼
0 → f 𝛼

𝛽𝛾
Λ𝛽

0𝜗
𝛾

0,

𝜗𝛼
1 → d𝜗𝛼

0 + f 𝛼
𝛽𝛾
(Λ𝛽

0𝜗
𝛾

1 + A𝛽𝜗
𝛾

0),

F𝛼 → d𝜗𝛼
1 + f 𝛼

𝛽𝛾
(A𝛽𝜗

𝛾

1 + A+𝛽𝜗
𝛾

0 − F𝛽Λ𝛾

0),

F+𝛼 → dF𝛼 + f 𝛼
𝛽𝛾
(Λ𝛽

0F
+𝛼 + A𝛽F𝛾 + A+𝛽𝜗

𝛾

1 + Λ+𝛽

0 𝜗
𝛾

0).

(4.11)

Putting all antifields and additional gauge parameters to zero, we recover the fields and gauge parameters of the kinematical data of
ordinary gauge theory as well as

F = dA + 1
2
[A,A], dF + [A, F] = 0,

𝛿A = QBRSTA = dΛ0 + [A,Λ0], 𝛿F = QBRSTF = −[F,Λ0].
(4.12)

Note that here 𝛿A and 𝛿F are of ghost degree one and, thus, may differ in signs from the expressions found in (4.6). To recover these
more familiar expressions, one can pull out the ghost degree to either side which fixes the discrepancies. We will refrain from doing
so in the following and provide the infinitesimal gauge transformations as found from the BRST complex.

4.3. Equivalence of Gauge Theory Kinematical Data

Our construction in the last section also allows us to explore possible equivalences of general gauge theories. As discussed in [20], any
Lagrangian field theory gives rise to a BV-complex, which is the dual of an L∞-algebra. Two field theories are then physically equivalent
if there is a quasi-isomorphism between them. This requires, in particular, that gauge equivalent field configurations are mapped to
gauge equivalent field configurations and thus that the L∞-algebras encoding the kinematical data of equivalent field theories are
quasi-isomorphic. In other words, if closed, the BRST complexes of equivalent field theories are dually quasi-isomorphic.
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Consider now two quasi-isomorphic L∞-algebras 𝔤 and �̃�. Their Chevalley–Eilenberg algebras are dually quasi-isomorphic, which
lifts to a dual quasi-isomorphism of the Weil algebras (Φ,Ψ, 𝜂Ψ ◦Φ, 𝜂Φ ◦Ψ) : 𝖶(𝔤) ≊ 𝖶(�̃�). A morphism𝒜 : 𝖶adj(𝔤) → Ω∙(U) encoding
kinematical data induces a morphism𝒜 : 𝖶adj(�̃�)→ Ω∙(U) by pullback:

𝖶adj(𝔤)

Ω∙(U)

𝖶adj(�̃�)

Φ

𝒜

Ψ

𝒜=Ψ∗𝒜=𝒜◦Ψ

(4.13)

Moreover, the dual quasi-isomorphism of Weil algebras (Φ,Ψ, 𝜂Ψ ◦Φ, 𝜂Φ ◦Ψ) induces a full quasi-isomorphism between the BRST L∞-
algebroids.
One may now think that a general dual quasi-isomorphism of Weil algebras (Φ,Ψ, 𝜂Ψ ◦Φ, 𝜂Φ ◦Ψ) : 𝖶(𝔤) ≊ 𝖶(�̃�) leads to a quasi-

isomorphism between the two BRST L∞-algebroids. This, however, is not true: recall that in our construction of the BRST complex,
we put certain gauge parameters equal to zero. General dual quasi-isomorphisms of Weil algebras will mix gauge parameters with
gauge fields and therefore change, in general, the structure of gauge transformations. This can also be seen from another perspective:
general dual quasi-isomorphisms of the Weil algebras will mix gauge fields with curvatures, which induces a change of the notion
of flatness. Since gauge transformations are partially flat homotopies, this leads to inequivalent gauge transformations. We have, in
fact, seen an example of this in our discussion of unadjusted and adjusted Weil algebras.
To preserve the gauge structure, the dual quasi-isomorphism between Weil algebras has to restrict to a dual quasi-isomorphism of

the underlying Chevalley–Eilenberg algebras, which is equivalent to a quasi-isomorphism of the gauge L∞-algebras. We thus have the
following statement:

Theorem 4.1. The kinematical data of two gauge field theories are equivalent, if and only if their gauge L∞-algebras are quasi-isomorphic.

4.4. Unadjusted Weil Algebras Lead to Fake Flatness

Let us now consider the kinematical data of higher gauge theory for a generic Lie 2-algebra 𝔤 = (𝔤−1 → 𝔤0) with Chevalley–Eilenberg
algebra (2.9) and Weil algebra (2.19), as derived by the truncated enlarged AKSZ-construction presented in the previous section. That
is, we have a map

𝒜(t𝛼) = Λ𝛼
0 + A𝛼 + A+𝛼 + Λ+𝛼

0 +… ,

𝒜(t̂𝛼) = 𝜗𝛼
0 + 𝜗𝛼

1 + F𝛼 + F+𝛼 +… ,

𝒜(ra) = Σa
0 + Λa

1 + Ba + B+a + Λ+a
1 +… ,

𝒜(r̂a) = Θa
0 + Θa

1 + Θa
2 +Ha +H+a +… ,

(4.14)

where we decompose 𝒜 now in components and subspaces of 𝔤. The action of the differential (4.10) is readily computed and we
recover the kinematical data of higher gauge theory, as expected:

𝛿A = dΛ0 + 𝜇2(A,Λ0) + 𝜇1(Λ1), 𝛿B = dΛ1 + 𝜇2(A,Λ1) + 𝜇2(Λ0, B) −
1
2
𝜇3(A,A,Λ0),

F = dA + 1
2
𝜇2(A,A) + 𝜇1(B), H = dB + 𝜇2(A, B) −

1
3!

𝜇3(A,A, A),

dF = −𝜇2(A, F) + 𝜇1(H), dH = −𝜇2(A,H) + 𝜇2(F, B) −
1
2
𝜇3(A,A, F).

(4.15)

The truncation Θa
2 = 0, however, also produces the equation

− 1
2
𝜇3(Λ0,Λ0, F) + 𝜇2(F,Σ0) = 0. (4.16)

As Λ0 and Σ0 are independent gauge parameters it follows that both 𝜇2(F,Σ0) = 0 and 𝜇3(Λ0,Λ0, F) = 0, which requires a restriction
of the gauge transformations or of F in order to ensure that QBRST is well-defined. The nilpotency Q

2
BRST = 0 then follows from the

definition of QBRST. This point is familiar from the quantization of field theories with 2-form potentials, where such a BRST algebra
is called open and considered to close only up to equations of motion F = 0.
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The curvature F was called fake curvature in the original paper on non-abelian gerbes,[6] and the requirement of vanishing fake
curvature is ubiquitous. One might think that a transition to strict Lie 2-algebras, for which 𝜇3 vanishes, together with ignoring the
higher gauge transformations parameterized by Σ0 might solve the issue. This, however, is not the case. The fake curvature condition
F = 0 then arises generically in the composition of finite gauge transformations. Moreover, it has been noted that the fake curvature
condition is a requirement for the parallel transport described by the connection (A, B) to be reparametrization invariant.[21]

This is in fact a rather generic feature of higher gauge theories constructed from unadjusted Weil algebras, cf. [20]. The BRST
complex of a higher gauge theory based on a Lie n-algebra for n > 1 is open and requires the fake curvatures, which are all curvature
forms except for the top one, to vanish.
We can now finally define the notion of adjusted Weil algebra:

Definition 4.2. We call a Weil algebra adjusted, if the resulting BRST complex for 𝔤-connection objects is closed. That is, Q2
BRST = 0 without

invoking any equations of motion.

We will find in Section 5.2 that the Weil algebras introduced in Sections 3.3 and 3.4 are indeed adjusted in this sense.

4.5. Fake Flat Higher Gauge Theories are Locally Abelian

While vanishing of the fake curvatures is clearly not an issue for higher versions of Chern–Simons theories, it is highly problematic
in the context of higher gauge theories with locally non-vanishing curvatures, cf. [15, 41]. To underline this point, let us give an
explicit geometrical proof that fake-flat kinematical data of a higher gauge theory based on 2-groups is locally abelian. A detailed
analytical proof has been given before in [55]. For simplicity, we assume that we can use categorical equivalence to strictify the gauge
2-group. That is, we work with the non-abelian gerbes first introduced in the literature in [6, 7] and ignore the (categorically equivalent)
generalizations, as e.g. the ones of [12].
We thus start from a strict gauge Lie 2-group modeled by a crossed module of Lie groups  = (𝖧

𝜕
←←←←←←←←←←→ 𝖦). That is, we have two Lie

groups 𝖧 and 𝖦, a group homomorphism 𝜕 : 𝖧 → 𝖦, and an action ⊳: 𝖦 × 𝖧 → 𝖧 such that

𝜕(g ⊳ h1) = g𝜕(h1)g
−1 and 𝜕(h1) ⊳ h2 = h1h2h

−1
1 (4.17)

for all g ∈ 𝖦 and h1,2 ∈ 𝖧. The second relation implies that ker(𝜕) is an abelian subgroup of 𝖧, because the group commutator reads
as

[h1, h2] := h1h2h
−1
1 h−12 =

(
𝜕(h1) ⊳ h2

)
h−12 = h1

(
𝜕(h2) ⊳ h−11

)
, hi ∈ 𝖧. (4.18)

The first relation in (4.17) implies that im(𝜕) is a normal subgroup of𝖦 and therefore𝖦 is a principal im(𝜕)-bundle over𝖦0 := coker(𝜕) =
𝖦∕im(𝜕), which is a group with product induced by that on 𝖦:

g1𝜕(h1)g2𝜕(h2) = g1g2𝜕(g
−1
2 ⊳ h1)𝜕(h2) = g1g2𝜕((g

−1
2 ⊳ h1)h2) ∼ g1g2, (4.19)

where gi ∈ 𝖦 and hi ∈ 𝖧. We also note that a group commutator with an element in im(𝜕) takes values in im(𝜕):

[𝜕(h), g] = 𝜕(h)g𝜕(h−1)g−1 = 𝜕(h)𝜕(g ⊳ h−1) = 𝜕(h(g ⊳ h−1)) ∈ im(𝜕) (4.20)

for all g ∈ 𝖦 and h ∈ 𝖧.
A crossed module of Lie groups differentiates to a crossed module of Lie algebras which in turn corresponds to a strict Lie

2-algebra

𝔤 = ( 𝔤−1 → 𝔤0 ) = (𝖫𝗂𝖾(𝖧)→ 𝖫𝗂𝖾(𝖦) ), (4.21)

where 𝜇1 is the differential of 𝜕 and 𝜇2 arises from the commutator on 𝖫𝗂𝖾(𝖦) and the action of 𝖫𝗂𝖾(𝖦) on 𝖫𝗂𝖾(𝖧). We again have the
exact sequence

0 ←→ ker(𝜇1) → 𝔤−1
𝜇1
←←←←←←←←←←←←←←→ 𝔤0

𝜋
←←←←←←←←←←←→ coker(𝜇1) ←→ 0, (4.22)

cf. (2.41), where coker(𝜇1) is a Lie algebra.
Recall from our discussion above that a 𝔤-connection object over a contractible patch U of some manifoldM is locally given by a 1-

and a 2-form,

A ∈ Ω1(U) ⊗ 𝔤0 and B ∈ Ω2(U) ⊗ 𝔤−1 (4.23)
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with curvatures

F = dA + 1
2
𝜇2(A,A) + 𝜇1(B) = 0 and H = dB + 𝜇2(A, B). (4.24)

Finite gauge transformations are parametrized by g ∈ Ω0(U,𝖦) and Λ1 ∈ Ω1(U) ⊗ 𝔤−1 and act on the gauge potential 1- and 2-forms
according to

A → Ã = g−1Ag + g−1dg + 𝜇1(Λ1),

B → B̃ = g−1 ⊳ B + dΛ1 + Ã ⊳ Λ1 +
1
2
[Λ1,Λ1],

(4.25)

cf. e.g. [22].
To analyze these transformations further, note that when writing a group element infinitesimally as18 g = 𝟙𝖦 + A we have

𝟙𝖦 + 𝜕(h−1)A𝜕(h) − A = [𝜕(h), 𝟙𝖦 + A] ∈ im(𝜕) (4.26)

by Equation (4.20) and differentiating yields

𝜕(h)A𝜕(h−1) − A ∈ im(𝜇1) = ker(𝜋). (4.27)

This implies that gauge transformations (g,Λ1) of A descend to gauge transformations of 𝜋(A) parametrized by the element [g] ∈ 𝖦0:
let h ∈ 𝖧 and g ∈ 𝖦, then

𝜋(Ã) = 𝜋
(
𝜕(h−1)g−1Ag𝜕(h) + 𝜕(h−1)g−1d

(
g𝜕(h)

)
+ 𝜇1(Λ1

1)
)

= 𝜋
(
g−1Ag + g−1dg

)
= [g−1]𝜋(A)[g] + [g−1]d[g].

(4.28)

Because of 𝜋(F) = 𝜋(dA + 1
2
[A,A]) = 0, we have an element g0 ∈ Ω0(U,𝖦0) such that

𝜋(A) = g−10 dg0. (4.29)

The pullback bundle g∗0𝖦 is topologically trivial over U because U is contractible. Therefore, g∗0𝖦 admits a global section, which
induces a lift ĝ0 ∈ Ω0(U,𝖦) of g0 ∈ Ω0(U,𝖦0). Acting with the corresponding gauge transformation (g,Λ1) = (ĝ0, 0), we obtain gauge
potential 1- and 2-forms

Ã ∈ Ω1(U) ⊗ 𝔤0 and B̃ ∈ Ω2(U) ⊗ 𝔤−1 with 𝜋(Ã) = 0. (4.30)

That is, Ã ∈ ker(𝜋) and there is an element (g,Λ1) = (𝟙𝖦,Λ1) in the 2-group of gauge transformation such that Ã = 𝜇1(Λ1). Acting with
this gauge transformation on the potential yields the gauge potentials

̃̃A ∈ Ω1(U) ⊗ 𝔤0 and ̃̃B ∈ Ω2(U) ⊗ 𝔤−1 with ̃̃A = 0, 𝜇1(
̃̃B) = 0, (4.31)

where the former relation is implied by the gauge invariant equation F = 0. We are thus left with a 2-form B′ ∈ Ω2(U) ⊗ ker(𝜇1), the
connective structure on an abelian gerbe over U. Altogether, we arrive at the following theorem.

Theorem 4.3. A connection on a non-abelian principal 2-bundle is locally gauge equivalent to a connection on an abelian gerbe.

A generalization to principal 3-bundles based on 2-crossed modules of Lie groups with trivial Peiffer lifting is straightforward,
cf. also the analytical discussion in [55]. A proof for even higher bundles should also be possible using a reformulation in terms of
simplicial principal bundles,[56] cf. also [57], after extending the Poincaré lemma beyond what has been done in [58].

5. String Structures and their Metric Extensions

The problems that the fake curvature condition creates in higher gauge theory are overcome by employing adjusted Weil algebras
in the construction of 𝔤-connection objects. For the string Lie 2-algebra, this leads to string structures and we shall discuss them in
the following.

18 Here and in the following, we use suggestive matrix group notation, adding Lie algebra elements to Lie group elements and obtaining Lie group
elements. This is just done for simplicity and our discussion can be made rigorous, cf. [12].
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5.1. String Structures and String Theory

The local connection data for string structures was first discovered in the context of supergravity.[25,26] The full topological picture first
arose in the work of Killingback[23] and [24] and we shall briefly review the relevant points in the following.
Recall that a point particle with world-line supersymmetry leads to a global anomaly of the corresponding quantum mechanics

whose cancellation requires the n-dimensional target space manifoldM to be spin, i.e. admit a spin structure. The latter is a lift of the
frame bundle, which is a principal 𝖲𝖮(n)-bundle, to a 𝖲𝗉𝗂𝗇(n)-bundle along the projection in the short exact sequence

1 ←→ ℤ2 ←→ 𝖲𝗉𝗂𝗇(n) ←→ 𝖲𝖮(n) ←→ 1. (5.1)

A spin structure exists if the second Stiefel–Whitney class w2(M) ∈ H2(M,ℤ2) vanishes, in which case inequivalent spin structures
are characterized by the groupH1(M,ℤ2).
Similarly, a supersymmetric sigma model with target space an n-dimensional manifold M leads to a quantum theory with global

anomalies.[59] As shown in [60], the anomaly can be canceled if the first fractional Pontryagin class 1
2
𝗉1(M) ∈ H4(M,ℤ) vanishes and

if a trivialization of the relevant cocycle is provided. The condition 1
2
𝗉1(M) = 0 can be interpreted as a lift of the spin bundle 𝖲𝗉𝗂𝗇(n)

over the free loop M :=𝖬𝖺𝗉(S1,M) along the projection in the short exact sequence

1 ←→ S1 ←→ ̂𝖲𝗉𝗂𝗇(n) ←→ 𝖲𝗉𝗂𝗇(n) ←→ 1, (5.2)

cf. [23, 61]. Such a lift exists if H3(M,ℤ) is trivial and inequivalent lifts are characterized by the group H1(M,S1) ≅ H2(M,ℤ) ≅
H3(M,ℤ). We say thatM is a string manifold.19

More generally, we can have a cancellation between a principal fiber bundle P over M and the tangent bundle of M so that the
condition 𝗉1(M) = 𝗉1(TM) = 0 is replaced by the condition

𝗉1(P) − 𝗉1(TM) = 0, (5.3)

which is the condition for the cancellation of global and perturbative anomalies in string theory.[23]

Let P be a principal 𝖲𝗉𝗂𝗇(n)-bundle. We then have the following two equivalent definitions of a string structure:

• A string structure on P is a lift of the structure group of P to 𝖲𝗍𝗋𝗂𝗇𝗀(n).[64]
• A string structure on P is a trivialization of the Chern–Simons gerbe of P,[65] i.e. of the 2-gerbe with topological class 1

2
𝗉1(P).

These topological string structures can be endowed with connections. In this paper, we shall be exclusively interested in the local
description of these connections.

5.2. Local Connection Data for String Structures

As mentioned above, the local structure of a string connection was first discovered in the context of supergravity.[25,26] This data can
be obtained as a 𝔤-connection object using the adjusted Weil algebra𝖶adj(�̂�) introduced in Section 3.3 as first observed in [17, 66].
We describe a �̂�sk-connection object on an contractible patch U as a triple

(A, B, C) ∈ (Ω1(U) ⊗ 𝔤) ⊕ Ω2(U) ⊕ Ω3(U) (5.4)

with curvature 2-, 3- and 4-forms

F := dA + 1
2
[A,A], H := dB − 1

3!
𝜇3(A,A, A) + 𝜒sk(A, F) − C = dB + (A, dA) + 1

3
(A, [A,A]) − C, G := dC, (5.5)

which satisfy the Bianchi identities

dF + [A, F] = 0, dH − 𝜒sk(F, F) +G = dH − (F, F) +G = 0, dG = 0. (5.6)

19 There is actually a nice sequence behind this: vanishing of the first and second Stiefel–Whitney classes of a manifold M correspond to M being
orientable and spin, respectively. Recall that a spin structure on loop space is a lift of the looped frame bundle to its S1-central extension. The free
loop space M is now orientable ifM is spin and it is spin ifM is string, cf. also [61–63].
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Gauge transformations act on the �̂�sk-connection object according to

𝛿A = dΛ0 + 𝜇2(A,Λ0), 𝛿B = dΛ1 + (Λ0, F) −
1
2
𝜇3(A,A,Λ0) − Σ, 𝛿C = dΣ, (5.7)

which induces the following transformations of the curvatures:

𝛿F = −𝜇2(F,Λ0), 𝛿H = 0, 𝛿G = 0. (5.8)

To restrict to a 𝔰𝔱𝔯𝔦𝔫𝔤sk(𝔤)-connection object, we simply impose the condition C = G = 0. This reproduces the kinematical data in [25,
26], if we let 𝔤 = 𝔥 ⊕ 𝔰𝔭𝔦𝔫(1, 9) with metrics of opposite signs on the two summands, where 𝔥 = 𝔢8 × 𝔢e or 𝔥 = 𝔰𝔬(32) the additional
gauge algebra in heterotic supergravity and 𝔰𝔭𝔦𝔫(1, 9) the structure Lie algebra of the frame bundle lifted to a spin structure.
The loop model case follows analogously. Here, we describe a �̂�lp-connection object on a contractible patch U as a triple

(A, B, C) ∈ (Ω1(U) ⊗ P0𝔤) ⊕ (Ω2(U) ⊗ Ω̂𝔤) ⊕ Ω3(U) (5.9)

with curvature 2-, 3- and 4-forms

F := dA + 1
2
[A,A] + 𝜇1(B), H := dB + 𝜇2(A, B) − 𝜒lp(A, F) − 𝜇1(C), G := dC, (5.10)

where 𝜒lp(−,−) is introduced in Equation (3.43b). In this case, the curvature forms satisfy the Bianchi identities

dF + [A, F] = 𝜇1(𝜒lp(A, F)) + 𝜇1(H), dH + 𝜒lp(F, F) + 𝜇1(G) = 0, dG = 0. (5.11)

Gauge transformations act on the �̂�lp-connection object according to

𝛿A = dΛ0 + 𝜇2(A,Λ0) + 𝜇1(Λ1), 𝛿B = dΛ1 + 𝜇2(A,Λ1) + 𝜇2(Λ0, B) − 𝜒lp(Λ0, F) − 𝜇1(Σ), 𝛿C = dΣ, (5.12)

which induces the following transformations of the curvatures:

𝛿F = −𝜒lp(Λ0, F) − 𝜇2(F,Λ0), 𝛿H = 0, 𝛿G = 0. (5.13)

Again, to restrict to a 𝔰𝔱𝔯𝔦𝔫𝔤lp(𝔤)-connection object we can impose the condition C = G = 0.
We note that in both models, the self-duality equation H =∗ H for U = ℝ1,5 is gauge covariant for arbitrary 2-form curvature F.

This is not the case for curvatures obtained from the unadjusted Weil algebra.
The two BRST complexes from which the above sets of gauge transformations are obtained indeed close without any further

condition on the 2-form curvatures F. This confirms that𝖶adj(�̂�sk) and𝖶adj(�̂�lp) are adjustedWeil algebras in the sense of definition 4.2.
Note that the above constructions are readily truncated by simply using adjustedWeil algebras for both string Lie 2-algebras. However,
the extended picture better fits the definition of string structures in terms of trivializations of a Chern–Simons gerbe. Moreover, it
will be useful in the metric extension discussed next.
Let us also recall the morphism between local string structures, as derived in [16]. We have induced maps

(Ask, Bsk, Csk) (Alp, Blp, Clp)

𝜓

𝜙

, (5.14)

𝜙 : Alp → Ask = 𝜕Alp, Blp → Bsk = 𝗉𝗋ℝBlp + ∫
1

0
d𝜏 (Ȧlp, Alp),

Clp → Csk = Clp,

𝜓 : Ask → Alp = Ask𝓁(𝜏), Bsk → Blp = Bsk +
1
2
[Ask, Ask](𝓁(𝜏) − 𝓁2(𝜏)),

Csk → Clp = Csk.

(5.15)

These are, of course, the pullbacks of 𝔤-connection objects as discussed in (4.13).
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Finally, we note that using string structures replaces the problematic fake curvature condition F = 0 with the Bianchi identity,
e.g. ∇F = 𝜇1(H) in the skeletal case, which still ensures that quasi-isomorphic Lie 2-algebras give rise to the same gauge-equivalence
classes of kinematical data.

5.3. Metric String Lie 4-Algebra

To write down an action for a field theory involving an L∞-algebra, we need to introduce the analogue of a metric or inner product.
The appropriate notion of a metric L∞-algebra is the following, cf. [67, 68] or also [20].

Definition 5.1. A cyclic structure on an L∞-algebra 𝔤 is a non-degenerate bilinear graded symmetric map ⟨−,−⟩ : 𝔤 × 𝔤 → ℝ such that

⟨a1,𝜇i(a2,… , ai+1)⟩ = (−1)i+i(|a1|+|ai+1|)+|ai+1|∑i
j=1 |aj|⟨ai+1,𝜇i(a1,… , ai)⟩ (5.16)

for a1,… , ai+1 ∈ 𝔤. An L∞-algebra endowed with a cyclic structure is called a cyclic L∞-algebra.

In the dual, dga-picture, a cyclic structure on an L∞-algebra 𝔤 corresponds to a homogeneously graded symplectic form 𝜔 on the
grade-shifted vector space 𝔤[1]. Here, the differential Q becomes symplectic and can be written as Q = {,−}, where the Poisson
bracket is the one induced by 𝜔.
Clearly, neither the Lie 3-algebras �̂�sk nor �̂�lp are cotangent spaces and therefore they do not admit a cyclic structure. The solution

to this problem for a general 3-term L∞-algebra 𝔤 is to minimally extend the grade-shifted vector space 𝔤[1] to T∗[4]𝔤[1], which carries
a canonical symplectic form, and to endow it with a minimal Hamiltonian  such that the restriction of {,−} to 𝔤[1] reproduces the
differential in the dga 𝖢𝖤(𝔤).[16] This is in fact a slight generalization of what is done in the BV formalism when introducing antifields,
cf. appendix B.
Let us first discuss �̂�sk. The extension to the cotangent space reads as[16]

T∗[4]�̂�sk[1] =
(
(𝔤∗ ⊕ ℝ)[3] ⊕ (ℝ∗ ⊕ ℝ)[2] ⊕ (ℝ∗ ⊕ 𝔤)[1]

)
=:

(
(𝔤∗u ⊕ ℝq)[1] ⊕ (ℝ∗

s ⊕ ℝr)[1] ⊕ (ℝ∗
p ⊕ 𝔤t)[1]

)
,

(5.17)

where the subscripts, again, merely help to assign the coordinate functions t𝛼 , p, r, s, q, u𝛼 of degrees 1,1,2,2,3,3, respectively, and allow
us to drop the grade-shift. In terms of these, the canonical symplectic form reads as

𝜔 = dt𝛼 ∧ du𝛼 + dq ∧ dp + dr ∧ ds, (5.18)

and the symplectic completion discussed in appendix B yields the homological vector field

Q̂ = − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 𝜕

𝜕t𝛼
+
(

1
3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + q
)

𝜕

𝜕r
− s 𝜕

𝜕p
+
(
−f 𝛾

𝛼𝛽
t𝛽u𝛾 −

1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 s
)

𝜕

𝜕u𝛼

. (5.19)

Note that Q̂ restricts indeed to the homological vector field of �̂�sk for p = s = u = 0.
It turns out that we still wish to preserve the quasi-isomorphism of the extended L∞-algebra to 𝔤, and this is achieved by kernel-

extending the L∞-algebra with dg-manifold T∗[4]�̂�sk[1] as explained in appendix C. This means that the cyclic structure only exists on
a subset of the extension, which is sufficient for our purposes[3]:

Definition 5.2. The metric extension of �̂�sk is the Lie 4-algebra

�̂�𝜔
sk =

⎛⎜⎜⎜⎜⎝
𝔤∗v 𝔤∗u ℝ∗

s ℝ∗
p

⊕ ⊕ ⊕

ℝq ℝr 𝔤t

𝜇1=id 𝜇1=id

𝜇1=id

⎞⎟⎟⎟⎟⎠
(5.20)
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with higher products

𝜇2 : 𝔤t ∧ 𝔤t → 𝔤t, 𝜇2(t1, t2) = [t1, t2],

𝜇2 : 𝔤t ∧ 𝔤∗u → 𝔤∗u, 𝜇2(t, u) = u([−, t]),

𝜇2 : 𝔤t ∧ 𝔤∗v → 𝔤∗v , 𝜇2(t, v) = v([−, t]),

𝜇3 : 𝔤t ∧ 𝔤t ∧ 𝔤t → ℝr , 𝜇3(t1, t2, t3) = (t1, [t2, t3]),

𝜇3 : 𝔤t ∧ 𝔤t ∧ℝs → 𝔤∗u, 𝜇3(t1, t2, s) = s
(
(−, [t1, t2])

)
,

(5.21)

and obvious pairings

⟨u, t⟩ = u(t), ⟨q, p⟩ = q(p) = qp, ⟨s, r⟩ = s(r) = sr. (5.22)

It is rather clear that the 𝜇1-cohomologies of �̂�𝜔
sk and 𝔤 agree, but let us give the explicit dual quasi-isomorphism for the (ordinary)

Weil algebra𝖶(�̂�𝜔
sk). Its generators read as

20

degrees 5 4 3 2 1

generators v̂𝛼 û𝛼 ŝ p̂

q̂ r̂ t̂𝛼

v𝛼 u𝛼 s p

q r t𝛼

(5.23)

and the differential acts as

Q𝖶 : t𝛼 → − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , p → −s + p̂,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 , p̂ → ŝ,

r → 1
3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + q + r̂, s → ŝ,

r̂ → − 1
2
f𝛼𝛽𝛾 t

𝛼t𝛽 t̂𝛾 − q̂, ŝ → 0,

u𝛼 → −f 𝛾

𝛼𝛽
t𝛽u𝛾 −

1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 s − v𝛼 + û𝛼 , q → q̂,

û𝛼 → −f 𝛾

𝛼𝛽
t𝛽 û𝛾 + f 𝛾

𝛼𝛽
t̂𝛽u𝛾 + f𝛼𝛽𝛾 t̂

𝛽 t𝛾 s + 1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 ŝ + v̂𝛼 , q̂ → 0,

v𝛼 → −f 𝛾

𝛼𝛽
t𝛽v𝛾 + v̂𝛼 ,

v̂𝛼 → −f 𝛾

𝛼𝛽
t𝛽 v̂𝛾 + f 𝛾

𝛼𝛽
t̂𝛽v𝛾 .

(5.24)

We have a dual quasi-isomorphism (Φ̂, Ψ̂, 𝜂Ψ̂ ◦ Φ̂, 0) : 𝖶(�̂�𝜔
sk) ≊ 𝖶(𝔤), which reads as

Φ̂ : t𝛼 → t̃𝛼 , t̂𝛼 → ̃̂t𝛼 , q → − 1
3!
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 t̃𝛾 , q̂ → − 1
2
f𝛼𝛽𝛾 t̃

𝛼 t̃𝛽 ̃̂t𝛾 ,

Ψ̂ : t̃𝛼 → t𝛼 , ̃̂t𝛼 → t̂𝛼
(5.25a)

with the remaining generators in the kernel of Φ̂ and

𝜂Ψ̂ ◦ Φ̂ : s → p, ŝ → −p̂, q → −r, q̂ → r̂,

v𝛼 → u𝛼 −
1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾p, v̂𝛼 → −û𝛼 + f𝛼𝛽𝛾 t̂
𝛽 t𝛾p + 1

2
f𝛼𝛽𝛾 t

𝛼t𝛽 p̂,
(5.25b)

and all other generators of𝖶(�̂�𝜔
sk) are in the kernel of 𝜂Ψ̂ ◦ Φ̂, which also defines the extension of this 2-morphism to all of𝖶(𝗂𝗇𝗇(�̂�𝜔

sk)).

20 We slightly abuse notation here by using the same letters for elements of subspaces as well as the coordinate functions on the grade-shifted versions
of these subspaces.
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Consider now the corresponding constructions for the extended loop string algebra �̂�lp:

Definition 5.3. The metric extension of �̂�lp is the Lie 4-algebra

�̂�𝜔
lp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝔤∗v (P0𝔤)∗u (L0𝔤)∗s
⊕

⊕ ℝ∗
s0

ℝ∗
p

⊕

ℝq ℝr0 ⊕

⊕

(L0𝔤)r (P0𝔤)t

𝜕∗

id

id

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.26)

with higher products

𝜇2 : P0𝔤t ∧ P0𝔤t → P0𝔤t, 𝜇2(t1, t2) = [t1, t2],

𝜇2 : P0𝔤t ∧ L0𝔤r → L0𝔤r , 𝜇2(t, r) = [t, r],

𝜇2 : P0𝔤t ∧ L0𝔤r → ℝr0
, 𝜇2(t, r) = −2∫

1

0
d𝜏 (t, ṙ),

𝜇2 : P0𝔤t ∧ (P0𝔤)∗u → (P0𝔤)∗u, 𝜇2(t, u) = u([−, t]),

𝜇2 : P0𝔤t ∧ (L0𝔤)∗s → (L0𝔤)∗s , 𝜇2(t, s) = s([−, t]),

𝜇2 : (L0𝔤)r ∧ (L0𝔤)∗s → (P0𝔤)∗u, 𝜇2(r, s) = s([−, r]),

𝜇2 : P0𝔤t ∧ℝ∗
s0
→ (L0𝔤)∗s , 𝜇2(t, s0) = −2s0 ∫

1

0
d𝜏 (ṫ,−),

𝜇2 : L0𝔤r ∧ℝ∗
s0
→ (P0𝔤)∗u, 𝜇2(r, s0) = −2s0 ∫

1

0
d𝜏 (ṙ,−),

𝜇2 : P0𝔤t ∧ 𝔤∗v → 𝔤∗v , 𝜇2(t, v) = v([−, 𝜕t]),

(5.27)

and obvious pairings

⟨u, t⟩ = u(t), ⟨s, r⟩ = s(r), ⟨s0, r0⟩ = s0r0, ⟨p, q⟩ = pq. (5.28)

The unadjusted Weil algebra of �̂�𝜔
lp has generators

degrees 5 4 3 2 1

generators v̂𝛼 û𝛼𝜏 ŝ𝛼𝜏 , ŝ0 p̂

q̂ r̂𝛼𝜏 , r̂0 t̂𝛼𝜏

v𝛼 u𝛼𝜏 s𝛼𝜏 , s0 p

q r𝛼𝜏 , r0 t𝛼𝜏

(5.29)
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and the differential acts according to

Q𝖶 : t𝛼𝜏 → − 1
2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 + t̂𝛼𝜏 , p → −s0 + p̂,

t̂𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏 t̂𝛾𝜏 + r̂𝛼𝜏 , p̂ → ŝ0,

r𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏r𝛾𝜏 + r̂𝛼𝜏 , s0 → ŝ0,

r̂𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏 r̂𝛾𝜏 + f 𝛼

𝛽𝛾
t̂𝛽𝜏r𝛾𝜏 , ŝ0 → 0,

r0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + q + r̂0, q → q̂,

r̂0 → 2∫
1

0
d𝜏 𝜅𝛼𝛽

(
t𝛼𝜏 ̇̂r𝛽𝜏 − t̂𝛼𝜏 ṙ𝛽𝜏

)
− q̂, q̂ → 0,

s𝛼𝜏 → −f 𝛾

𝛼𝛽
t𝛽𝜏 s𝛾𝜏 + 2𝜅𝛼𝛽 ṫ

𝛽𝜏 s0 + u𝛼𝜏 + ŝ𝛼𝜏 ,

ŝ𝛼𝜏 → f 𝛾

𝛼𝛽
(t̂𝛽𝜏 s𝛾𝜏 − t𝛽𝜏 ŝ𝛾𝜏 ) − 2𝜅𝛼𝛽 (

̇̂t𝛽𝜏 s0 − ṫ𝛽𝜏 ŝ0) − û𝛼𝜏 ,

u𝛼𝜏 → −f 𝛾

𝛼𝛽
(t𝛽𝜏u𝛾𝜏 + r𝛽𝜏 s𝛾𝜏 ) + 2𝜅𝛼𝛽 ṙ

𝛽𝜏 s0 − v𝛼𝛿(𝜏 − 1) + û𝛼𝜏 ,

û𝛼𝜏 → f 𝛾

𝛼𝛽
(t̂𝛽𝜏u𝛾𝜏 − t𝛽𝜏 û𝛾𝜏 + r̂𝛽𝜏 s𝛾𝜏 + r𝛽𝜏 ŝ𝛾𝜏 ) + v̂𝛼𝛿(𝜏 − 1)−

− 2𝜅𝛼𝛽 ( ̇̂r
𝛽𝜏 s0 + ṙ𝛽𝜏 ŝ0),

v𝛼 → −f 𝛾

𝛼𝛽
t𝛽1v𝛾 + v̂𝛼 ,

v̂𝛼 → f 𝛾

𝛼𝛽
(t̂𝛽1v𝛾 − t𝛽1v̂𝛾 ).

(5.30)

Again, the 𝜇1-cohomologies of �̂�𝜔
lp and 𝔤 evidently agree. We refrain from writing out the dual quasi-isomorphism and turn directly

to the necessary adjustments.

5.4. Adjusted Weil Algebras for the Metric Extensions

The generators of the adjusted Weil algebra 𝖶adj(�̂�𝜔
sk) satisfying the condition of definition 4.2 are again as in (5.23). As usual, the

adjustment is not unique but a possible choice is given by

Q𝖶adj
: t𝛼 → − 1

2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 + t̂𝛼 , p → −s + p̂,

t̂𝛼 → −f 𝛼
𝛽𝛾
t𝛽 t̂𝛾 , p̂ → ŝ,

r → 1
3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 − 𝜅𝛼𝛽 t
𝛼 t̂𝛽 + q + r̂, s → ŝ,

r̂ → 𝜅𝛼𝛽 t̂
𝛼 t̂𝛽 − q̂, ŝ → 0,

u𝛼 → −f 𝛾

𝛼𝛽
t𝛽u𝛾 −

1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 s − v𝛼 + û𝛼 , q → q̂,

û𝛼 → −f 𝛾

𝛼𝛽
t𝛽 û𝛾 + v̂𝛼 , q̂ → 0,

v𝛼 → −f 𝛾

𝛼𝛽
t𝛽v𝛾 − f 𝛾

𝛼𝛽
t̂𝛽u𝛾 + f𝛼𝛽𝛾 t

𝛽 t̂𝛾 s − 1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 ŝ + v̂𝛼 ,

v̂𝛼 → −f 𝛾

𝛼𝛽
t𝛽 v̂𝛾 + f 𝛾

𝛼𝛽
t̂𝛽 û𝛾 .

(5.31)

As required, this adjustment avoids any dynamical constraints on the curvatures in the BRST complex.While the choice of adjustment
is not unique, it requires the presence of amodified v̂ and cannot be accomplished bymodifying û alone. The above choice is aminimal
one which allows for simple expressions and covariant Bianchi identities.
The dual quasi-isomorphism in (5.25a) can be slightly amended to a dual quasi-isomorphism (Φadj,Ψadj, 𝜂adj, 0) : 𝖶adj(�̂�𝜔

sk) ≊ 𝖶(𝔤),
which reads as

Φadj : t
𝛼 → t̃𝛼 , t̂𝛼 → ̃̂t𝛼 , q → cs, q̂ → 1

2
𝗉1,

Ψadj : t̃
𝛼 → t𝛼 , ̃̂t𝛼 → t̂𝛼

(5.32a)
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with the remaining generators again living in the kernel of Φadj and

𝜂 : s → p, ŝ → −p̂, q → −r, q̂ → r̂,

v𝛼 → u𝛼 −
1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾p, v̂𝛼 → −û𝛼.
(5.32b)

A quick computation now shows that this dual quasi-isomorphism for the adjusted Weil algebra is indeed compatible with the
invariant polynomials in the sense of diagram (3.8).
Let us also describe the adjustment for the loop model. The generators of the adjusted Weil algebra𝖶adj(�̂�𝜔

lp) are as in (5.29), and
an adjustment that satisfies the condition of definition 4.2 is the following:

Q𝖶adj
: t𝛼𝜏 → − 1

2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 + t̂𝛼𝜏 , p → −s0 + p̂,

t̂𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏 t̂𝛾𝜏 + 𝜒𝛼𝜏 (t, t̂) + r̂𝛼𝜏 , p̂ → ŝ0,

r𝛼𝜏 → −f 𝛼
𝛽𝛾
t𝛽𝜏r𝛾𝜏 + 𝜒𝛼𝜏 (t, t̂) + r̂𝛼𝜏 , s0 → ŝ0,

r̂𝛼𝜏 → 0, ŝ0 → 0,

r0 → 2 ∫ 1
0 d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + 𝜒(t, t̂) + q + r̂0, q → q̂,

r̂0 → −𝜒(t̂, t̂) − q̂, q̂ → 0,

s𝛼𝜏 → −f 𝛾

𝛼𝛽
t𝛽𝜏 s𝛾𝜏 + 2𝜅𝛼𝛽 ṫ

𝛽𝜏 s0 + u𝛼𝜏 + ŝ𝛼𝜏 ,

ŝ𝛼𝜏 → −û𝛼𝜏 ,

u𝛼𝜏 → −f 𝛾

𝛼𝛽
(t𝛽𝜏u𝛾𝜏 + r𝛽𝜏 s𝛾𝜏 ) + 2𝜅𝛼𝛽 ṙ

𝛽𝜏 s0 − v𝛼𝛿(𝜏 − 1) + 𝜒𝛼𝜏 (t̂, s) − 𝜒𝛼𝜏 (t, ŝ) + 𝜒𝛼𝜏 (
̇̂t, s0) − 𝜒𝛼𝜏 (ṫ, ŝ0) + û𝛼𝜏 ,

û𝛼𝜏 → v̂𝛼𝛿(𝜏 − 1),

v𝛼 → −f 𝛾

𝛼𝛽
t𝛽1v𝛾 − 𝜒𝛼(t̂, u) + 𝜒𝛼(t, û) + 𝜒𝛼(t̂,𝜒(t, s)) + 𝜒𝛼(t̂,𝜒(ṫ, s0)) + v̂𝛼 ,

v̂𝛼 → 0,

(5.33)

where the additional 𝜒(−,−) are defined in (5.35c).

5.5. Local Differential Metric String Structures

The above adjusted Weil algebras were derived by constructing a consistent BRST complex using the method given in Section 4.2.
This complex contains the full local information of differential string structures, and below we summarize the results.
A �̂�𝜔

sk-connection object on a patch U of some manifold is given by potential forms

A ∈ Ω1(U) ⊗ (𝔤 ⊕ ℝ∗), B ∈ Ω2(U) ⊗ (ℝ ⊕ ℝ∗)[1],

C ∈ Ω3(U) ⊗ (𝔤∗ ⊕ ℝ)[2], D ∈ Ω4(U) ⊗ 𝔤∗[3],
(5.34a)

from which the curvatures

F = dA + 1
2
𝜇2(A,A) + 𝜇1(B) ∈ Ω2(U) ⊗ (𝔤 ⊕ ℝ∗),

H = dB − 1
3!

𝜇3(A,A, A) + 𝜒sk(A, F) − 𝜇1(C)

= dB + (A, dA) + 1
3
(A,𝜇2(A,A)) − 𝜇1(C) ∈ Ω3(U) ⊗ (ℝ ⊕ ℝ∗)[1],

G = dC + 𝜇2(A,C) +
1
2
𝜇3(A,A, B) + 𝜇1(D) ∈ Ω4(U) ⊗ (𝔤∗ ⊕ ℝ)[2],

I = dD + 𝜇2(A,D) + 𝜒sk(F, C) +
1
2
𝜒sk(A,A,H)

+ 𝜒sk(F, A, B) ∈ Ω5(U) ⊗ 𝔤∗[3]

(5.34b)
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are constructed, where, in addition to the higher brackets defined in (5.21), the adjustment gives rise to the additional structure
maps

𝜒sk : 𝔤 ∧ 𝔤 → ℝ[1], 𝜒sk(a1, a2) = (a1, a2),

𝜒sk : 𝔤 ∧ 𝔤∗[2] → 𝔤∗[3], 𝜒sk(a1, a
∗
2) = a∗2

(
[−, a1]

)
,

𝜒sk : 𝔤 ∧ 𝔤 ∧ℝ∗[1] → 𝔤∗[3], 𝜒sk(a1, a2, s) = s
(
−, [a1, a2]

)
.

(5.34c)

The curvatures satisfy the Bianchi identities

dF + 𝜇2(A, F) − 𝜇1(H) = 0, dH − 𝜒sk(F, F) + 𝜇1(G) = 0,

dG + 𝜇2(A,G) − 𝜇1(I) = 0, dI + 𝜇2(A, I) − 𝜒sk(F,G) = 0.
(5.34d)

The infinitesimal gauge transformations (read-off from the BRST transformations of the gauge potentials and curvatures) are given
by

𝛿A = dΛ0 + 𝜇2(A,Λ0) + 𝜇1(Λ1),

𝛿B = dΛ1 + 𝜒sk(F,Λ0) −
1
2
𝜇3(A,A,Λ0) − 𝜇1(Λ2),

𝛿C = dΛ2 + 𝜇2(A,Λ2) + 𝜇2(C,Λ0) +
1
2
𝜇3(A,A,Λ1) − 𝜇3(A, B,Λ0) + 𝜇1(Λ3),

𝛿D = dΛ3 + 𝜇2(A,Λ3) − 𝜇2(D,Λ0) + 𝜒sk(F,Λ2) − 𝜒sk(A, F,Λ1) + 𝜒sk(A,H,Λ0) + 𝜒sk(B, F,Λ0),

(5.34e)

and

𝛿F = −𝜇2(F,Λ0), 𝛿H = 0,

𝛿G = −𝜇2(G,Λ0), 𝛿I = 𝜇2(I,Λ0)
(5.34f )

with gauge parameters (still carrying ghost degrees)

Λ0 ∈ Ω0(U) ⊗ (𝔤 ⊕ ℝ∗), Λ1 ∈ Ω1(U) ⊗ (ℝ ⊕ ℝ∗)[1],

Λ2 ∈ Ω2(U) ⊗ (𝔤∗ ⊕ ℝ)[2], Λ3 ∈ Ω3(U) ⊗ 𝔤∗[3].
(5.34g)

In the case of the loop model �̂�𝜔
lp, we have the potential forms

A ∈ Ω1(U) ⊗ (P0𝔤 ⊕ ℝ∗), B ∈ Ω2(U) ⊗ (L0𝔤 ⊕ (L0𝔤)∗ ⊕ ℝ ⊕ ℝ∗)[1],

C ∈ Ω3(U) ⊗ ((P0𝔤)∗ ⊕ ℝ)[2], D ∈ Ω4(U) ⊗ 𝔤∗[3]
(5.35a)

with curvatures

F = dA + 1
2
𝜇2(A,A) + 𝜇1(B) ∈ Ω2(U) ⊗ (P0𝔤 ⊕ ℝ∗),

H = dB + 𝜇2(A, B) − 𝜒lp(A, F) − 𝜇1(C) ∈ Ω3(U) ⊗ (L0𝔤 ⊕ (L0𝔤)∗ ⊕ ℝ ⊕ ℝ∗)[1],

G = dC + 𝜇2(A,C) + 𝜇2(B, B) + 𝜇1(D) + 𝜒lp(A,H) − 𝜒lp(F, B) ∈ Ω4(U) ⊗ ((P0𝔤)∗ ⊕ ℝ)[2],

I = dD + 𝜇2(A,D) + 𝜒lp(F, C) − 𝜒lp(A,H) − 𝜒lp(F,𝜒lp(A, B)) ∈ Ω5(U) ⊗ 𝔤∗[3],

(5.35b)
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where, again, due to the adjustment, we introduce additional structure maps complementing the higher brackets defined in (5.27):

𝜒lp : P0𝔤 ∧ P0𝔤 → (L0𝔤 ⊕ ℝ)[1], 𝜒lp

(
𝛾1, 𝛾2

)
=
(
[𝛾1, 𝛾2] − 𝓁(𝜏)[𝜕𝛾1, 𝜕𝛾2], 2∫

1

0
d𝜏

(
�̇�1(𝜏), 𝛾2(𝜏)

))
,

𝜒lp : P0𝔤 ∧ ((L0𝔤)∗ ⊕ ℝ∗)[1] → (P0𝔤)∗[2], 𝜒lp

(
𝛾 , (𝜆∗, s)

)
= 𝜆∗([−, 𝛾 ] − 𝓁(𝜏)𝜕[−, 𝛾 ]

)
− 2s∫

1

0
d𝜏 (�̇�(𝜏),−),

𝜒lp : P0𝔤 ∧ (P0𝔤)∗[2] → 𝔤∗[3], 𝜒lp(𝛾1, 𝛾
∗
2 ) = 𝛾∗

2 (𝓁(𝜏)[−, 𝜕𝛾1]).

(5.35c)

The curvatures satisfy the Bianchi identities

dF + 𝜇2(A, F) − 𝜇1(𝜒lp(A, F)) − 𝜇1(H) = 0, dH + 𝜒lp(F, F) + 𝜇1(G) = 0, dG − 𝜇1(I) = 0, dI = 0. (5.35d)

Here, the infinitesimal gauge transformations read as

𝛿A = dΛ0 + 𝜇2(A,Λ0) + 𝜇1(Λ1),

𝛿B = dΛ1 − 𝜇2(B,Λ0) + 𝜇2(A,Λ1) − 𝜇1(Λ2) − 𝜒lp(Λ0, F),

𝛿C = dΛ2 + 𝜇2(A,Λ2) + 𝜇2(C,Λ0) + 𝜇2(B,Λ1) + 𝜇1(Λ3) − 𝜒lp(F,Λ1) + 𝜒lp(Λ0, H),

𝛿D = dΛ3 + 𝜇2(A,Λ3) − 𝜇2(D,Λ0) + 𝜒lp(F,Λ2) − 𝜒lp(Λ0, G) − 𝜒lp(F,𝜒lp(A,Λ1)) − 𝜒lp(F,𝜒lp(Λ0, B)),

(5.35e)

and

𝛿F = −𝜇2(F,Λ0) − 𝜇1(𝜒lp(Λ0, F)), 𝛿H = 0, 𝛿G = 0, 𝛿I = 0 (5.35f )

with gauge parameters (again, still carrying ghost degrees)

Λ0 ∈ Ω0(U) ⊗ (P0𝔤 ⊕ ℝ∗), Λ1 ∈ Ω1(U) ⊗ (L0𝔤 ⊕ (L0𝔤)∗ ⊕ ℝ ⊕ ℝ∗)[1],

Λ2 ∈ Ω2(U) ⊗ ((P0𝔤)∗ ⊕ ℝ)[2], Λ3 ∈ Ω3(U) ⊗ 𝔤∗[3].
(5.35g)

In both cases, the truncation from �̂�𝜔
sk- and �̂�

𝜔
lp-connection objects to actual differential string structures overU is achieved by setting

the ℝq-components of C and G to zero. This is evidently consistent since ⟨q, q̂⟩ is a differential ideal in both �̂�𝜔
sk and �̂�𝜔

lp.
We note that the kinematical data for “ordinary” higher gauge theory with gauge Lie 4-algebras �̂�𝜔

sk and �̂�
𝜔
lp are recovered by putting

F = H = G = 0 everywhere.

6. Applications and Outlook

In this last section, we describe a number of immediate applications of our constructions as well as an outlook on future research di-
rections.

6.1. Self-Dual 3-Forms, Self-Dual Strings and Supersymmetry

Our originalmotivation for studying string structures is certainly the application in the description of non-abelian or rather interacting
self-dual strings as discussed in [16] and the interacting generalization of the free action for a single M5-brane as given in [3, 16]. This
action was based on the observation[16] that metric string structures for the skeletal model are special cases of the gauge structure of
the = (1, 0) superconformal field theory constructed in [69–71], which was inspired by the observation made in [72] and later in [73]
that this gauge structure was an L∞-algebra endowed with extra structure.
Ideally, the field theory presented in [3, 16] should be formulated in a way that is agnostic about the model underlying the construc-

tion of the string structure, and this is certainly one of our future goals. A first step has been made with the full clarification of metric
string structures for both the skeletal and the loop models in this paper.
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One technical and more immediate goal was to clarify the precise form of the 4- and 5-form curvatures. Our results in [16] deviated
from those in [69], where, however, the forms were only specified up to terms in a particular subspace.We conclude that the curvatures
found above in (5.34b),

G = dC + 𝜇2(A,C) +
1
2
𝜇3(A,A, B) + 𝜇1(D),

I = dD + 𝜇2(A,D) + 𝜒sk(F, C) + 𝜒sk(F, A, B) +
1
2
𝜒sk(A,A,H),

(6.1)

differ from the ones used in [69],

G = dC + 𝜇2(A,C) + Bs(F,−) + 𝜇1(D) + c0𝜇4(A,A, A, A),

I = dD + 𝜇2(A,D) + c1,
(6.2)

where c0 ∈ ℝ and c1 ∈ Ω4(U) ⊗ (𝔤∗[2] ⊕ ℝq) are not specified any further. We note that these are consistent curvatures arising from
an adjusted Weil algebra, if c0 = 0. However, this Weil algebra is not compatible with the cyclic structure induced by the symplectic
form (5.18). For the action given in [69], this compatibility is irrelevant, as no pairings of 𝔤−2 and 𝔤0 are present. In the PST-extended
version, however, such pairings do exist.[3] In general, the compatibility with the full symplectic form guarantees for mathematical
consistency irrespective of the form of the action.
Recall that the curvatures of the model of [16] appear in the equations of motion in a supercovariantized form. In particular, the

self-dual 3-formH for a skeletal string structure (without metric extension) is supercovariantized to

H− = 1
2
(H− ∗ H) ←→ ℋ− := 1

2
(H− ∗ H) − (�̄�, 𝛾(3)𝜆), (6.3)

where 𝜆 is the spinor field of the vector multiplet and 𝛾(3) := 𝛾𝜇𝜈𝜅dx
𝜇 ∧ dx𝜈 ∧ dx𝜅 . This supercovariantized form is derived from the

superspace version of the Bianchi identities for string structures on the  = (n, 0) superspace ℝ1,5|4n, cf. [74]. The latter are readily
derived from our perspective if we extend the image of our dga-morphism defining the string structure  : 𝖶(�̂�sk)→ 𝖶(ℝ1,5) =
Ω∙(ℝ1,5) to the Weil algebra of the  = (1, 0)-superspace ℝ1,5|8 consisting of the superforms on ℝ1,5|8. There are additional flatness
conditions that need to be imposed on the supercurvatures, which is also the casewhen supersymmetric Yang–Mills theory is described
as a partially flat dga-morphism.[75]

6.2. Relation to the Tensor Hierarchy in Gauged Supergravity

Particularly important Lie 2-algebras for the construction of six-dimensional superconformal field theories are those appearing in the
tensor hierarchy of gauged supergravity. This was also the starting point for the original model of [69], which admitted the truncation
to string structures presented in [3, 16].
Recall that gauged supergravities (see [76] and references therein) are constructed by promoting a Lie subalgebra 𝔥 of the Lie algebra

�̂� of global symmetry (usually given by a split real form of the complex Lie algebra 𝔢11−d) to a local symmetry. The Lie algebra 𝔥 is
encoded in the image of a linear map Θ : V → �̂� in �̂�, where V is a �̂�-module and Θ is the embedding tensor satisfying

[Θ(v1),Θ(v2)] = Θ(Θ(v1) ⊳ v2). (6.4)

This relation guarantees that 𝔥 = im(Θ) is indeed a Lie algebra. It also implies that V carries a Leibniz algebra structure defined by

v1 ∙ v2 :=Θ(v1) ⊳ v2, (6.5)

as explained in detail in [77–79]. The gauge potential 1-form A now takes values in V . Because V is not a Lie algebra, the curvature
of A does not transform covariantly, and 2-form potentials are introduced to compensate for this. These, again, may have curvatures
that do not transform covariantly, leading to even higher forms and ultimately to what is known as the tensor hierarchy.[80]

An appropriate description of this structure is given in terms of EL∞-algebras.
[81] Recall that the general categorification of a Lie

algebra to a weak Lie 2-algebra involves a lift of the Jacobi identity by a natural transformation called the Jacobiator and a lift of the
antisymmetry property by a natural transformation called the Alternator. If we take the Moore complex of such a categorified weak Lie
2-algebra, we arrive at a 2-term EL∞-algebra.
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Definition 6.1 ([81]). A 2-term EL∞-algebra is a 2-term chain complex 𝔢 : 𝔢−1
𝜀1
←←←←←←←←←←←←←←→ 𝔢0 equipped with a chain map 𝜀2 : 𝔢 ⊗ 𝔢→ 𝔢 as well as

chain homotopies21

𝖺𝗅𝗍 : 𝜀2(−,−) + 𝜀2(−,−) ◦𝜋12 → 0,

𝗃𝖺𝖼 : 𝜀2(−, 𝜀2(−,−)) − 𝜀2(𝜀2(−,−),−) − 𝜀2(−, 𝜀2(−,−)) ◦𝜋12 → 0,
(6.6)

which are explicitly given by maps

𝖺𝗅𝗍 : 𝔢0 ⊗ 𝔢0 → 𝔢−1 and 𝗃𝖺𝖼 : 𝔢0 ⊗ 𝔢0 ⊗ 𝔢0 → 𝔢−1, (6.7)

satisfying

[x1, x2] + [x2, x1] = 𝜀1(𝖺𝗅𝗍(x1, x2)), [x1, y] + [y, x1] = 𝖺𝗅𝗍(x1, 𝜀1(y))

𝜀2(x1, 𝜀2(x2, x3)) − 𝜀2(𝜀2(x1, x2), x3) − 𝜀2(x2, 𝜀2(x1, x3)) = 𝜀1(𝗃𝖺𝖼(x1, x2, x3)),

𝜀2(x1, 𝜀2(x2, y)) − 𝜀2(𝜀2(x1, x2), y) − 𝜀2(x2, 𝜀2(x1, y)) = 𝗃𝖺𝖼(x1, x2, 𝜀1(y)),

(6.8)

(because they are chain homotopies) as well as

𝜀2(x1, 𝗃𝖺𝖼(x2, x3, x4)) + 𝗃𝖺𝖼(x1, 𝜀2(x2, x3), x4) + 𝗃𝖺𝖼(x1, x3, 𝜀2(x2, x4)) + 𝜀2(𝗃𝖺𝖼(x1, x2, x3), x4) + 𝜀2(x3, 𝗃𝖺𝖼(x1, x2, x4))

= 𝗃𝖺𝖼(x1, x2, 𝜀2(x3, x4)) + 𝗃𝖺𝖼(𝜀2(x1, x2), x3, x4) + 𝜀2(x2, 𝗃𝖺𝖼(x1, x3, x4)) + 𝗃𝖺𝖼(x2, 𝜀2(x1, x3), x4) + 𝗃𝖺𝖼(x2, x3, 𝜀2(x1, x4)),

𝗃𝖺𝖼(x1, x2, x3) + 𝗃𝖺𝖼(x2, x1, x3) = −𝜀2(𝖺𝗅𝗍(x1, x2), x3),

𝗃𝖺𝖼(x1, x2, x3) + 𝗃𝖺𝖼(x1, x3, x2) = 𝜀2(x1, 𝖺𝗅𝗍(x2, x3)) − 𝖺𝗅𝗍(𝜀2(x1, x2), x3) − 𝖺𝗅𝗍(x2, 𝜀2(x1, x3)),

𝖺𝗅𝗍(x1, 𝜀2(x2, x3)) = 𝖺𝗅𝗍(𝜀2(x2, x3), x1)

(6.9)

for all xi ∈ 𝔢0 and y ∈ 𝔢−1.

Note that 2-term EL∞-algebras with trivial alternator 𝖺𝗅𝗍 are 2-term L∞-algebras and the Lie 2-algebras they describe are sometimes
called semistrict Lie 2-algebras. If the Jacobiator 𝗃𝖺𝖼 is trivial, one speaks of hemistrict Lie 2-algebras. There is now a projection from
general 2-term EL∞-algebras to 2-term L∞-algebras [81, Theorem 3.2].
It is not hard to see that the failure of the Leibniz product (6.5) to be antisymmetric is in the kernel of Θ, thus giving rise to a

hemistrict EL∞-algebra structure on

𝔢 = ( 𝔢−1 → 𝔢0 ) = ( ker(Θ) → V ). (6.10)

The projection from a general 2-term EL∞-algebra to a 2-term L∞-algebra then results in an L∞-algebras structure via antisymmetriza-
tion.
The fact that the Leibniz algebra structure arising from the embedding tensor leads to a canonical 2-term L∞-algebra was explained

also in [82] and [79] independently of the results in [81]. In [79], the authors also provided the differential graded associative alge-
bra picture.
There is now indeed an example of a hemistrict Lie 2-algebra, which gives rise to the string Lie 2-algebra relevant to our model.

Consider the chain complex

𝔢 = ( 𝔢−1 → 𝔢0 ) = (ℝ
0
←←←←←←←←←←→ 𝔤 ) (6.11)

for 𝔤 some finite-dimensional Lie algebra and 𝜀2 : 𝔢0 ⊗ 𝔢0 → 𝔢0 given by the commutator and trivial on other arguments. The
Killing form (−,−) then yields an alternator 𝖺𝗅𝗍(x1, x2) = (x1, x2). The projection on the corresponding 2-term L∞-algebra yields the
Jacobiator

𝗃𝖺𝖼(x1, x2, x3) = (x1, [x2, x3]), (6.12)

and we recover the string Lie 2-algebra.
It thus seems that the alternator of a hemistrict Lie 2-algebra provides the additional structure that is needed to construct an

adjustment of the Weil algebra of an L∞-algebra. This point should be further explored, in particular in the context of the tensor

21 Here, 𝜋12 denotes the obvious permutation.
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hierarchy. Also the connection to the description of the tensor hierarchy in terms of Borcherds–Kac–Moody superalgebras as discussed
in [83–85] should be studied in detail. Finally, let us point out that our perspective should also be relevant in the context of exceptional
field theory, where similar structures arise.[86]

6.3. Beyond Local String Structures

Recall that minimal models of Lie 2-algebras can be classified [30, Theorem 57] in terms of a Lie algebra 𝔤0, a vector space 𝔤−1 carrying
a representation 𝜌 of 𝔤 together with a cocycle k(−,−,−) ∈ H3(𝔤0, 𝔤−1), leading to the Lie 2-algebra

𝜇1 : 𝔤−1
0
←←←←←←←←←←→ 𝔤0,

𝜇2 : 𝔤0 ∧ 𝔤0 → 𝔤0, 𝜇2(a1, a2) = [a1, a2],

𝜇2 : 𝔤0 ∧ 𝔤−1 → 𝔤−1, 𝜇2(a1, b) = 𝜌a1 (b),

𝜇3 : 𝔤0 ∧ 𝔤0 ∧ 𝔤0 → 𝔤−1, 𝜇3(a1, a2, a3) = k(a1, a2, a3)

(6.13)

for a1,2,3 ∈ 𝔤0 and b ∈ 𝔤−1. We should, in fact, extend our considerations to such more general Lie 2-algebras. This is particularly
important for reproducing the correct branching of Lie 2-algebras which is expected from splitting a stack of N = N1 + N2 M5-branes
into two well-separated stacks of N1 and N2 M5-branes, cf. [15]. Also the above discussion of the Leibniz algebras arising from the
tensor hierarchy suggests to look beyond string Lie 2-algebras.
An obvious problem to attack is thus a classification of L∞-algebras which admit an adjusted Weil algebra. This is particularly

important since an extended parallel transport that does allow for corresponding interacting field theories is most likely to be only
possible for such L∞-algebras. The study of the consistency of a parallel transport based on string structures as well as of higher
generalizations will also be part of our future studies.
Clearly, we do notmerely want to discussmetric string structures locally, but we wish to formulate a consistent global picture, ideally

in terms of a general differential cocycle. Such a cocycle would consist of a Čech cocycle defining the principal 4-bundle underlying
the metric string structure as well as the local 𝔰𝔱𝔯𝔦𝔫𝔤(𝔤)-connection object and further differential forms taking values in subspaces
of the Lie 4-algebra �̂�𝜔

sk or �̂�
𝜔
lp gluing all these together. We hope to report on progress in these directions soon.

Appendix A: Compositions of 2-Morphisms and Quasi-Isomorphisms

Let us briefly explore how 2-morphisms between morphisms of differential graded algebras and dual quasi-isomorphisms between
these compose.
We start with vertical composition of 2-morphisms. Consider 2-morphisms (Φ1,Φ2, 𝜂12) and (Φ2,Φ3, 𝜂23) with Φi : 𝖢𝖤(𝔤) → 𝖢𝖤(𝔥)

for some L∞-algebras 𝔤 and 𝔥 with

Q𝖢𝖤(𝔥)𝜂12 + 𝜂12Q𝖥(𝔤) = (Φ1 − Φ2) ◦ i
∗ ◦Υ,

Q𝖢𝖤(𝔥)𝜂23 + 𝜂23Q𝖥(𝔤) = (Φ2 − Φ3) ◦ i
∗ ◦Υ.

(A.1)

Diagrammatically, we have

𝖢𝖤(𝔤) 𝔤[2]∗

𝖢𝖤(𝔥) 𝖢𝖤(𝔤) 𝖶(𝔤) 𝖥(𝔤)

𝖢𝖤(𝔤)

Φ1

Φ2

i∗

i∗

i∗

Υ

Φ3

𝜂12

𝜂23

(A.2)

The composed 2-morphism is then

(Φ2,Φ3, 𝜂23) ◦ (Φ1,Φ2, 𝜂12) = (Φ1,Φ3, 𝜂12 + 𝜂23) (A.3)
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with

Q𝖢𝖤(𝔥)(𝜂12 + 𝜂23) + (𝜂12 + 𝜂23)Q𝖥(𝔤) = (Φ1 − Φ2 + Φ2 − Φ3) ◦ i
∗ ◦Υ

= (Φ1 − Φ3) ◦ i
∗ ◦Υ.

(A.4)

Horizontal composition of 2-morphisms is slightly more cumbersome. Let 𝔤1,2,3 be some L∞-algebras and (Φ12,Ψ12, 𝜂12) and
(Φ23,Ψ23, 𝜂23) be 2-morphisms between them. Now we have

Q𝖢𝖤(𝔤1)𝜂12 + 𝜂12Q𝖥(𝔤2) = (Φ12 − Ψ12) ◦ i
∗
2 ◦Υ2,

Q𝖢𝖤(𝔤2)𝜂23 + 𝜂23Q𝖥(𝔤3) = (Φ23 − Ψ23) ◦ i
∗
3 ◦Υ3

(A.5)

and the diagram

𝖢𝖤(𝔤2) 𝔤2[2]∗ 𝖢𝖤(𝔤3) 𝔤3[2]∗

𝖢𝖤(𝔤1) 𝖶(𝔤2) 𝖥(𝔤2) 𝖢𝖤(𝔤2) 𝖶(𝔤3) 𝖥(𝔤3)

𝖢𝖤(𝔤2) 𝖢𝖤(𝔤3)

Φ12 Φ23
i∗2

i∗2

Υ2

i∗3

i∗3

�̂�(Φ23)

Υ3

Ψ12

𝜂12

Ψ23

𝜂23
(A.6)

Here,

�̂�(Φ23) :=Υ−1
2 ◦ Φ̂23 ◦Υ3, (A.7)

where Φ̂23 : 𝖶(𝔤3)→ 𝖶(𝔤2) is the lift of the map Φ23 to the Weil algebras, cf. (2.20). The horizontal composition of the 2-morphisms
now reads as

(Φ12,Ψ12, 𝜂12) ⊗ (Φ23,Ψ23, 𝜂23) =
(
Φ12 ◦Φ23,Ψ12 ◦Ψ23, 𝜂12 ◦ �̂�(Φ23) + Ψ12 ◦ 𝜂23

)
. (A.8)

Indeed, we have

Q𝖢𝖤(𝔤1)(𝜂12 ◦ �̂�(Φ23) + Ψ12 ◦ 𝜂23) + (𝜂12 ◦ �̂�(Φ23) + Ψ12 ◦ 𝜂23)Q𝖥(𝔤3)

=
(
(Φ12 − Ψ12) ◦ i

∗
2 ◦Υ2 − 𝜂12 ◦Q𝖥(𝔤2)

)
◦ �̂�(Φ23) + Ψ12 ◦Q𝖢𝖤(𝔤2) ◦ 𝜂23

+ 𝜂12 ◦Q𝖥(𝔤2) ◦ �̂�(Φ23) + Ψ12 ◦
(
(Φ23 − Ψ23) ◦ i

∗
3 ◦Υ3 −Q𝖢𝖤(𝔤2) ◦ 𝜂23

)
= (Φ12 − Ψ12) ◦ i

∗
2 ◦Υ2 ◦ �̂�(Φ23) + Ψ12 ◦ (Φ23 − Ψ23) ◦ i

∗
3 ◦Υ3

=
(
(Φ12 − Ψ12) ◦Φ23 + Ψ12 ◦ (Φ23 − Ψ23)

)
◦ i∗3 ◦Υ3

= (Φ12 ◦Φ23 − Ψ12 ◦Ψ23) ◦ i
∗
3 ◦Υ3,

(A.9)

where we have used the fact that

i∗2 ◦Υ2 ◦ �̂�(Φ23) = Φ23 ◦ i
∗
3 ◦Υ3. (A.10)

By composition of quasi-isomorphisms, we mean a chain of (dual) quasi-isomorphism

𝖢𝖤(𝔤1) 𝖢𝖤(𝔤2) 𝖢𝖤(𝔤3)

Φ21

Ψ12

Φ32

Ψ23

(A.11)
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with

[Q, 𝜂121] =
(
Ψ12 ◦Φ21 − id𝖢𝖤(𝔤1)

)
◦ i∗1 ◦Υ1,

[Q, 𝜂212] =
(
Φ21 ◦Ψ12 − id𝖢𝖤(𝔤2)

)
◦ i∗2 ◦Υ2,

[Q, 𝜂232] =
(
Ψ23 ◦Φ32 − id𝖢𝖤(𝔤2)

)
◦ i∗2 ◦Υ2,

[Q, 𝜂323] =
(
Φ32 ◦Ψ23 − id𝖢𝖤(𝔤3)

)
◦ i∗3 ◦Υ3.

(A.12)

The composition of the two quasi-isomorphisms is the quasi-isomorphism (Φ31,Ψ13, 𝜂131, 𝜂313) with

Φ31 = Φ32 ◦Φ21, Ψ13 = Ψ12 ◦Ψ23, 𝜂131 = Ψ12 ◦ 𝜂232 ◦ �̂�(Φ21) + 𝜂121, 𝜂313 = Φ31 ◦ 𝜂212 ◦ �̂�(Ψ23) + 𝜂323, (A.13)

as one readily verifies: for example, we have

Q𝖢𝖤(𝔤1) ◦ 𝜂131 + 𝜂131 ◦Q𝖶(𝔤1) = Ψ12 ◦Q𝖢𝖤(𝔤2) ◦ 𝜂232 ◦ �̂�(Φ21) + Ψ12 ◦ 𝜂232 ◦Q𝖥(𝔤2) ◦ �̂�(Φ21) + [Q, 𝜂121]

= Ψ12 ◦ (Ψ23 ◦Φ32 − id𝖢𝖤(𝔤2)) ◦ i
∗
2 ◦Υ2 ◦ �̂�(Φ21) +

(
Ψ12 ◦Φ21 − id𝖢𝖤(𝔤1)

)
◦ i∗1 ◦Υ1

=
(
Ψ12 ◦Ψ23 ◦Φ32 ◦Φ21 − id𝖢𝖤(𝔤1)

)
◦ i∗1 ◦Υ1.

(A.14)

Appendix B: Symplectic Completion

In this appendix, we briefly summarize the computations behind the symplectic completions leading to metric string structures. Our
conventions for differential forms and the Cartan calculus on graded manifolds will be those of [54]. That is, each coordinate function
zA of homogeneous degree |zA| yields a 1-form dzA of homogeneous degree |zA| + 1 (and the wedge product is graded commutative
with respect to this degree). The contraction with the vector field 𝜕

𝜕zA
satisfies 𝜄 𝜕

𝜕zA
dzB = 𝛿BA and 𝜄 𝜕

𝜕zA
is a graded derivation of the algebra

of differential forms of degree −|zA| − 1.
In general, given a graded manifold 𝔤 with homogeneously graded coordinates zA, we can symplectically complete it to a grade-

shifted tangent bundle T∗[k]𝔤 with additional homogeneously graded fiber coordinates22 z†A are the z
†
A of degree |z†A| = k − |zA|. On

T∗[k]𝔤, we have the canonical symplectic form

𝜔 = dzA ∧ dz†A (B.1)

of degree 2 + k (or, if one wishes, bidegree (2, k)). Starting from a homological vector field Q = QA 𝜕

𝜕zA
on 𝔤, we construct the Hamil-

tonian

̂ = (−1)|zA|+1QAz†A. (B.2)

A quick computation checks that the Hamiltonian vector field of ̂,
Q̂ = Q̂A 𝜕

𝜕zA
+ Q̂A

𝜕

𝜕z†A
with 𝜄Q̂𝜔 = d̂, (B.3)

satisfies Q̂A = QA and Q̂A ∼ z†A. Thus, upon factoring by the ideal generated by the z
†
A, we recover the dg-manifold (𝔤, Q). It remains

to ensure that

Q̂2 = 0 ⇔ 𝜄Q̂d̂ = Q̂̂ = 0. (B.4)

We compute

𝜄Q̂d̂ = 𝜄Q̂ 𝜄Q̂𝜔 = Q̂AQ̂A, (B.5)

and thus we have to ensure Q̂AQ̂A = 0, potentially by introducing quadratic and higher corrections in z†A to ̂.

22 In the BV formalism, which corresponds to the special case k = −1 of this construction, the z†A are the antifields.
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In the case of the symplectic graded manifold T∗[4]�̂�sk[1] defined in (5.17) we have the symplectic form

𝜔 = dt𝛼 ∧ du𝛼 + dq ∧ dp + dr ∧ ds. (B.6)

The Hamiltonian is

̂ = − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾u𝛼 +

1
3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 s + qs, (B.7)

which induces the homological vector field

Q̂ = − 1
2
f 𝛼
𝛽𝛾
t𝛽 t𝛾 𝜕

𝜕t𝛼
+
(

1
3!
f𝛼𝛽𝛾 t

𝛼t𝛽 t𝛾 + q
)

𝜕

𝜕r
− s 𝜕

𝜕p
+
(
−f 𝛽

𝛼𝛾
t𝛾u𝛽 −

1
2
f𝛼𝛽𝛾 t

𝛽 t𝛾 s
)

𝜕

𝜕u𝛼

. (B.8)

We have

Q̂AQ̂A = Q̂𝛼Q̂𝛼 = 0, (B.9)

because f 𝛼
𝛽𝛾
satisfies the Jacobi identity.

In the case of the loop model �̂�𝜔
lp, we have the symplectic form

𝜔 = ∫
1

0
d𝜏

(
𝛿t𝛼𝜏 ∧ 𝛿u𝛼𝜏 + 𝛿r𝛼𝜏 ∧ 𝛿s𝛼𝜏

)
+ 𝛿q ∧ 𝛿p + 𝛿r0 ∧ 𝛿s0, (B.10)

and the minimal Hamiltonian reads as

̂ = ∫
1

0
d𝜏

(
(− 1

2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏 )u𝛼𝜏 − f 𝛼

𝛽𝛾
t𝛽𝜏r𝛾𝜏 s𝛼𝜏

)
+
(
2∫

1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + q
)
s0 (B.11)

with Hamiltonian vector field

Q̂ = ∫
1

0
d𝜏

((
− 1

2
f 𝛼
𝛽𝛾
t𝛽𝜏 t𝛾𝜏 − r𝛼𝜏

)
𝜕

𝜕t𝛼𝜏
− f 𝛼

𝛽𝛾
t𝛽𝜏r𝛾𝜏 𝜕

𝜕r𝛼𝜏
+
(
−f 𝛾

𝛼𝛽
t𝛽𝜏u𝛾𝜏 − f 𝛾

𝛼𝛽
r𝛽𝜏 s𝛾𝜏 + 2𝜅𝛼𝛽 ṙ

𝛽𝜏 s0
)

𝜕

𝜕u𝛼𝜏

+
(
−f 𝛾

𝛼𝛽
t𝛽𝜏 s𝛾𝜏 + 2𝜅𝛼𝛽 ṫ

𝛽𝜏 s0 + u𝛼𝜏

)
𝜕

𝜕s𝛼𝜏

)
+
(
2∫

1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 + q
)

𝜕

𝜕r0
− s0

𝜕

𝜕p
,

(B.12)

where we used

∫
1

0
d𝜏 𝜅𝛼𝛽 t

𝛼𝜏 ṙ𝛽𝜏 = 𝜅𝛼𝛽

(
t𝛼1r𝛽1 − t𝛼0r𝛽0

)
− ∫

1

0
d𝜏 𝜅𝛼𝛽 ṫ

𝛼𝜏r𝛽𝜏 = −∫
1

0
d𝜏 𝜅𝛼𝛽 ṫ

𝛼𝜏r𝛽𝜏 (B.13)

since r𝛽1 = r𝛽0 = 0.

Appendix C: Kernel Extension of an L∞-Algebra

Let us briefly discuss the extension of a k-term L∞-algebra

𝔤 = ( 𝔤−k+1
𝜇−k+1
1

←←←←←←←←←←←←←←←←←←←←←←←←←→…
𝜇−1
1

←←←←←←←←←←←←←←←←←←←→ 𝔤0 ) (C.1)

by the kernel of its left-most differential,

�̂� = ( ker(𝜇−k+1
1 )

e
←←←←←←←←←→ 𝔤−k+1

𝜇−k+1
1

←←←←←←←←←←←←←←←←←←←←←←←←←→…
𝜇−1
1

←←←←←←←←←←←←←←←←←←←→ 𝔤0 ). (C.2)

Note that such a �̂� is necessarily quasi-isomorphic to a k − 1-term L∞-algebra. In this paper, we considered such extensions of the
string Lie 2-algebra to a Lie 3-algebra and of its symplectic completion to a Lie 4-algebra.
For simplicity, we shall discuss the extension in the higher product formulation. The higher products on 𝔤 induce higher products

on �̂�:

�̂�i|∧i𝔤 :=𝜇i, (C.3)
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and we define

�̂�1(b) := e(b), b ∈ �̂�−k = ker(𝜇−k+1
1 ). (C.4)

To fulfill the homotopy Jacobi identities for �̂�, we first note that clearly �̂�1 ◦ �̂�1 = 0. The only other homotopy Jacobi identities in �̂� that
now differ from those in 𝔤 due to definition (C.4) are the ones which contain terms of the form

�̂�j+1(�̂�1(b), a1,… , aj), b ∈ �̂�−k. (C.5)

Because of their degrees, the only higher products taking arguments in 𝔤−k+1 are 𝜇1 and 𝜇2, and therefore the only affected homotopy
Jacobi identity is

�̂�1(�̂�2(a, b)) = �̂�2(a, �̂�1(b)), a ∈ 𝔤0, b ∈ �̂�−k. (C.6)

Since �̂�1 is injective and 𝜇2(a, �̂�1(b)) ∈ ker(𝜇−k+1
1 ) due to the Jacobi identity in 𝔤, we can define

�̂�2(a, b) := e−1(𝜇2(a, e(b))), a ∈ 𝔤0, b ∈ �̂�−k, (C.7)

where e−1 is the inverse of e on ker(𝜇−k+1
1 ). For a1, a2 ∈ 𝔤0 and a3 ∈ ker(𝜇−k+1

1 ) ⊂ 𝔤−k, we have the homotopy Jacobi identity

0 = 𝜇2(𝜇2(a1, a2), a3) ± 𝜇2(𝜇2(a1, a3), a2) ± 𝜇2(𝜇2(a2, a3), a1) ± 𝜇1(𝜇3(a1, a2, a3)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=0

) ± 𝜇3( 𝜇1(a3)
⏟⏟⏟

=0

, a1, a2), (C.8)

which translates to the new homotopy Jacobi identity

0 = �̂�2(�̂�2(a1, a2), b) ± �̂�2(�̂�2(a1, b), a2) ± �̂�2(�̂�2(a2, b), a1) (C.9)

for b ∈ �̂�−k. Thus, the higher products �̂�i on �̂� satisfy the homotopy Jacobi identities.

Proposition C.1. Any k-term L∞-algebra 𝔤 possesses a kernel extension to a k + 1-term L∞-algebra �̂� as in (C.2). The higher products �̂�i on �̂�
are given by Equations (C.3), (C.4), and (C.7).
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