591 research outputs found

    Spin-filter effect of the europium chalcogenides: An exactly solved many-body model

    Full text link
    A model Hamiltonian is introduced which considers the main features of the experimental spin filter situation as s-f interaction, planar geometry and the strong external electric field. The proposed many-body model can be solved analytically and exactly using Green functions. The spin polarization of the field-emitted electrons is expressed in terms of spin-flip probabilities, which on their part are put down to the exactly known dynamic quantities of the system. The calculated electron spin polarization shows remarkable dependencies on the electron velocity perpendicular to the emitting plane and the strength of s-f coupling. Experimentally observed polarization values of about 90% are well understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures; http://orion.physik.hu-berlin.de

    Ferromagnetic Kondo-Lattice Model

    Full text link
    We present a many-body approach to the electronic and magnetic properties of the (multiband) Kondo-lattice model with ferromagnetic interband exchange. The coupling between itinerant conduction electrons and localized magnetic moments leads, on the one hand, to a distinct temperature-dependence of the electronic quasiparticle spectrum and, on the other hand, to magnetic properties, as e.~g.the Curie temperature T_C or the magnon dispersion, which are strongly influenced by the band electron selfenergy and therewith in particular by the carrier density. We present results for the single-band Kondo-lattice model in terms of quasiparticle densities of states and quasiparticle band structures and demonstrate the density-dependence of the self-consistently derived Curie temperature. The transition from weak-coupling (RKKY) to strong-coupling (double exchange) behaviour is worked out. The multiband model is combined with a tight-binding-LMTO bandstructure calculation to describe real magnetic materials. As an example we present results for the archetypal ferromagnetic local-moment systems EuO and EuS. The proposed method avoids the double counting of relevant interactions and takes into account the correct symmetry of atomic orbitals.Comment: 15 pages, 10 figure

    Proper weak-coupling approach to the periodic s-d(f) exchange model

    Full text link
    The periodic s-d(f) exchange model is characterized by a wide variety of interesting applications, a simple mathematical structure and a limited number of reliable approximations which take care of the quantum nature of the participating spins. We suggest the use of a projection-operator method for getting information perturbationally, which are not accessible via diagrammatic approaches. In this paper we present in particular results beyond perturbation theory, which are obtained such that almost all exactly known limiting cases are incorporated correctly. We discuss a variety of possible methods and evaluate their consequences for one-particle properties. These considerations serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.

    Quantum effects in the quasiparticle structure of the ferromagnetic Kondo lattice model

    Full text link
    A new ``Dynamical Mean-field theory'' based approach for the Kondo lattice model with quantum spins is introduced. The inspection of exactly solvable limiting cases and several known approximation methods, namely the second-order perturbation theory, the self-consistent CPA and finally a moment-conserving decoupling of the equations of motion help in evaluating the new approach. This comprehensive investigation gives some certainty to our results: Whereas our method is somewhat limited in the investigation of the J<0-model, the results for J>0 reveal important aspects of the physics of the model: The energetically lowest states are not completely spin-polarized.A band splitting, which occurs already for relatively low interaction strengths, can be related to distinct elementary excitations, namely magnon emission (absorption) and the formation of magnetic polarons. We demonstrate the properties of the ferromagnetic Kondo lattice model in terms of spectral densities and quasiparticle densities of states.Comment: 19 pages, 4 figure

    The treatment of zero eigenvalues of the matrix governing the equations of motion in many-body Green's function theory

    Full text link
    The spectral theorem of many-body Green's function theory relates thermodynamic correlations to Green's functions. More often than not, the matrix governing the equations of motion has zero eigenvalues. In this case, the standard text-book approach requires both commutator and anti-commutator Green's functions to obtain equations for that part of the correlation which does not lie in the null space of the matrix. In this paper, we show that this procedure fails if the projector onto the null space is dependent on the momentum vector. We propose an alternative formulation of the theory in terms of the non-null space alone and we show that a solution is possible if one can find a momentum-independent projector onto some subspace of the non-null space. To do this, we enlist the aid of the singular value decomposition (SVD) of the equation of motion matrix in order to project out the null space, thus reducing the size of the matrix and eliminating the need for the anti-commutator Green's function. We extend our previous work, dealing with a ferromagnetic Heisenberg monolayer and a momentum-independent projector onto the null space, where both multilayer films and a momentum-dependent projector are considered. We develop the numerical methods capable of handling these cases and offer a computational algorithmus that should be applicable to any similar problem arising in Green's function theory.Comment: 16 pages, 7 figure

    Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model

    Full text link
    The subject of the present paper is the theoretical description of collective electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with the widely used Random-Phase-Approximation, which combines Hartree-Fock theory with the summation of the two-particle ladder, we extend the theory to a more sophisticated single particle approximation, namely the Spectral-Density-Ansatz. Doing so we have to introduce a `screened` Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain physically reasonable spinwave dispersions. The discussion following the technical procedure shows that comparison of standard RPA with our new approximation reduces the occurrence of a ferromagnetic phase further with respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press

    Spin dynamics in the diluted ferromagnetic Kondo lattice model

    Get PDF
    The interplay of disorder and competing interactions is investigated in the carrier-induced ferromagnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state, and magnetic transition temperature are quantitatively investigated in terms of magnon properties for different models including dilution, disorder, and weakly-coupled spins. A strong optimization is obtained for T_c at hole doping p << x, highlighting the importance of compensation in diluted magnetic semiconductors. The estimated T_c is in good agreement with experimental results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon renormalization scheme, which yields a substantial enhancement in T_c due to spin clustering, and highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement in density of low-energy magnetic excitations due to disorder and competing interactions results in a strong thermal decay of magnetization, which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B of same order of magnitude as obtained in recent squid magnetization measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure

    Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

    Get PDF
    Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.Comment: 5 pages, 4 figure

    Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy

    Full text link
    We introduce a new aproximation scheme for the periodic Anderson model (PAM). The modified alloy approximation represents an optimum alloy approximation for the strong coupling limit, which can be solved within the CPA-formalism. Zero-temperature and finite-temperature phase diagrams are presented for the PAM in the intermediate-valence regime. The diversity of magnetic properties accessible by variation of the system parameters can be studied by means of quasiparticle densities of states: The conduction band couples either ferro- or antiferromagneticaly to the f-levels. A finite hybridization is a necessary precondition for ferromagnetism. However, too strong hybridization generally suppresses ferromagnetism, but can for certain system parameters also lead to a semi-metallic state with unusual magnetic properties. By comparing with the spectral density approximation, the influence of quasiparticle damping can be examined.Comment: 20 pages, 13 figure
    • …
    corecore