139 research outputs found
Optical pumping via incoherent Raman transitions
A new optical pumping scheme is presented that uses incoherent Raman
transitions to prepare a trapped Cesium atom in a specific Zeeman state within
the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme
over existing optical pumping schemes is that the atom can be prepared in any
of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity
quantum electrodynamics, but the technique is equally applicable to a wide
variety of atomic systems with hyperfine ground-state structure.Comment: 8 pages, 4 figure
The nature of iron-oxygen vacancy defect centers in PbTiO3
The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy
forms a charged defect associate, oriented along the crystallographic c-axis.
Its microscopic structure has been analyzed in detail comparing results from a
semi-empirical Newman superposition model analysis based on finestructure data
and from calculations using density functional theory.
Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor
center. The position of the iron ion in the ferroelectric phase is found to be
similar to the B-site in the paraelectric phase. Partial charge compensation is
locally provided by a directly coordinated oxygen vacancy.
Using high-resolution synchrotron powder diffraction, it was verified that
lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of
1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.
Quantum cellular automata quantum computing with endohedral fullerenes
We present a scheme to perform universal quantum computation using global
addressing techniques as applied to a physical system of endohedrally doped
fullerenes. The system consists of an ABAB linear array of Group V endohedrally
doped fullerenes. Each molecule spin site consists of a nuclear spin coupled
via a Hyperfine interaction to an electron spin. The electron spin of each
molecule is in a quartet ground state . Neighboring molecular electron
spins are coupled via a magnetic dipole interaction. We find that an
all-electron construction of a quantum cellular automata is frustrated due to
the degeneracy of the electronic transitions. However, we can construct a
quantum celluar automata quantum computing architecture using these molecules
by encoding the quantum information on the nuclear spins while using the
electron spins as a local bus. We deduce the NMR and ESR pulses required to
execute the basic cellular automata operation and obtain a rough figure of
merit for the the number of gate operations per decoherence time. We find that
this figure of merit compares well with other physical quantum computer
proposals. We argue that the proposed architecture meets well the first four
DiVincenzo criteria and we outline various routes towards meeting the fifth
criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/
submitted to Phys. Rev.
Age-Related Attenuation of Dominant Hand Superiority
The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities
Transcutaneous electrical nerve stimulation using an LTP-like repetitive stimulation protocol for patients with upper limb complex regional pain syndrome: A feasibility study
Introduction This feasibility study aimed to (i) develop a clinical protocol using a long-term potentiation-like repetitive stimulation protocol for transcutaneous electrical nerve stimulation in patients with upper limb complex regional pain syndrome and (ii) develop a research protocol for a single-blind randomised controlled trial investigating the efficacy of transcutaneous electrical nerve stimulation for complex regional pain syndrome. Methods This small-scale single-blind feasibility randomised-controlled trial planned to randomise 30 patients with upper limb complex regional pain syndrome to either a variant of transcutaneous electrical nerve stimulation or placebo transcutaneous electrical nerve stimulation for three weeks. Stimulation comprised 20 pulses over 1 s with a non-stimulation interval of 5 s, a so-called repetitive electrical stimulation protocol following the timing of long-term potentiation. Pain, function and body image were measured at baseline, post-treatment and at three months follow-up. At three months, participants were invited to one-to-one interviews, which were analysed thematically. Results A transcutaneous electrical nerve stimulation protocol with electrodes applied proximal to the area of allodynia in the region of the upper arm was developed. Participant concordance with the protocol was high. Recruitment was below target (transcutaneous electrical nerve stimulation (n = 6), placebo (n = 2)). Mean (SD) pain intensity for the transcutaneous electrical nerve stimulation group on a 0 to 10 scale was 7.2 (2.4), 6.6 (2.8) and 7.8 (1.9), at baseline, post-treatment and at three-month follow-up, respectively. Qualitative data suggested that some patients found transcutaneous electrical nerve stimulation beneficial, easy to use and were still using it at three months. Conclusion Patients tolerated transcutaneous electrical nerve stimulation well, and important methodological information to facilitate the design of a large-scale trial was obtained (ISRCTN48768534). </jats:sec
Depth-dependent intracortical myelin organization in the living human brain determined by in vivo ultra-high field magnetic resonance imaging
Background: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. Methods: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T 1 -weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T 1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T 1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. Results: Intracortical T 1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T 1 values and non-linearity indices (P < 10 125 ). Both T 1 values (P < 10 125 ) and non-linearity indices (P < 10 1215 ) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). Conclusions: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T 1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure
Cognitive and Tactile Factors Affecting Human Haptic Performance in Later Life
Background: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. Methodology/Principal Findings: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects ’ tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects ’ haptic performance. Conclusions: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration o
Perception of Vibrotactile Cues in Musical Performance
We suggest that studies on active touch psychophysics are needed to inform the design of haptic musical interfaces and better understand the relevance of haptic cues in musical performance. Following a review of the previous literature on vibrotactile perception in musical performance, two recent experiments are reported. The first experiment investigated how active finger-pressing forces affect vibration perception, finding significant effects of vibration type and force level on perceptual thresholds. Moreover, the measured thresholds were considerably lower than those reported in the literature, possibly due to the concurrent effect of large (unconstrained) finger contact areas, active pressing forces, and long-duration stimuli. The second experiment assessed the validity of these findings in a real musical context by studying the detection of vibrotactile cues at the keyboard of a grand and an upright piano. Sensitivity to key vibrations in fact not only was highest at the lower octaves and gradually decreased toward higher pitches; it was also significant for stimuli having spectral peaks of acceleration similar to those of the first experiment, i.e., below the standard sensitivity thresholds measured for sinusoidal vibrations under passive touch conditions
A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging
A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex
- …
