97 research outputs found

    Un cas de FiĂšvre Q Ă  l’Ecole nationale vĂ©tĂ©rinaire d’Alfort

    Get PDF
    Guilhon Jean, Dellmann Horst-Dieter. Un cas de FiĂšvre Q Ă  l’Ecole nationale vĂ©tĂ©rinaire d’Alfort. In: Bulletin de l'AcadĂ©mie VĂ©tĂ©rinaire de France tome 108 n°10, 1955. pp. 469-474

    Coexistence of the spin-density-wave and superconductivity in the (Ba,K)Fe2As2

    Full text link
    The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current research on the FeAs-based high Tc superconductors. Conflicting results exist in the LaFeAs(O,F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba,K)Fe2As2 system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high Tc ferropnictide superconductivity.Comment: 4 pages, 5 figure

    Storage, Accumulation and Deceleration of Secondary Beams for Nuclear Astrophysics

    Get PDF
    Low-energy investigations on rare ion beams are often limited by the available intensity and purity of the ion species in focus. Here, we present the first application of a technique that combines in-flight production at relativistic energies with subsequent secondary beam storage, accumulation and finally deceleration to the energy of interest. Using the FRS and ESR facilities at GSI, this scheme was pioneered to provide a secondary beam of 118^{118}Te52+^{52+} for the measurement of nuclear proton-capture at energies of 6 and 7 MeV/u. The technique provided stored beam intensities of about 10610^6 ions at high purity and brilliance, representing a major step towards low-energy nuclear physics studies using rare ion beams

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4
    • 

    corecore