11,432 research outputs found

    EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    Get PDF
    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences

    Coherent control of atomic spin currents in a double well

    Get PDF
    We propose an experimental feasible method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system and show that the directions of spin currents and net-particle tunneling can be manipulated by adiabatically varying the coupling strength between the atoms and the field. This system can be used for studying spin and tunneling phenomena across a wide range of interaction parameters. In addition, spin-squeezed states can be generated. It is useful for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio

    Dispersion spreading of polarization-entangled states of light and two-photon interference

    Full text link
    We study the interference structure of the second-order intensity correlation function for polarization-entangled two-photon light obtained from type-II collinear frequency-degenerate spontaneous parametric down-conversion (SPDC). The structure is visualised due to the spreading of the two-photon amplitude as two-photon light propagates through optical fibre with group-velocity dispersion (GVD). Because of the spreading, polarization-entangled Bell states can be obtained without any birefringence compensation at the output of the nonlinear crystal; instead, proper time selection of the intensity correlation function is required. A birefringent material inserted at the output of the nonlinear crystal (either reducing the initial o-e delay between the oppositely polarized twin photons or increasing this delay) leads to a more complicated interference structure of the correlation function.Comment: Extended version of our recent PRL paper. Submitted to PR

    Two-photon interference with thermal light

    Full text link
    The study of entangled states has greatly improved the basic understanding about two-photon interferometry. Two-photon interference is not the interference of two photons but the result of superposition among indistinguishable two-photon amplitudes. The concept of two-photon amplitude, however, has generally been restricted to the case of entangled photons. In this letter we report an experimental study that may extend this concept to the general case of independent photons. The experiment also shows interesting practical applications regarding the possibility of obtaining high resolution interference patterns with thermal sources.Comment: Added reference 1

    New high-efficiency source of photon pairs for engineering quantum entanglement

    Full text link
    We have constructed an efficient source of photon pairs using a waveguide-type nonlinear device and performed a two-photon interference experiment with an unbalanced Michelson interferometer. Parametric down-converted photons from the nonlinear device are detected by two detectors located at the output ports of the interferometer. Because the interferometer is constructed with two optical paths of different length, photons from the shorter path arrive at the detector earlier than those from the longer path. We find that the difference of arrival time and the time window of the coincidence counter are important parameters which determine the boundary between the classical and quantum regime. When the time window of the coincidence counter is smaller than the arrival time difference, fringes of high visibility (80±\pm 10%) were observed. This result is only explained by quantum theory and is clear evidence for quantum entanglement of the interferometer's optical paths.Comment: 4 pages, 4 figures, IQEC200

    Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    Get PDF
    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated

    Comment on ``Dispersion-Independent High-Visibility Quantum Interference ... "

    Full text link
    We show in this Comment that the interpretation of experimental data as well as the theory presented in Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)] are incorrect and discuss why such a scheme cannot be used to "recover" high-visibility quantum interference.Comment: Comment on Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)], 2nd revision, To appear in Phys. Rev. Lett. April, (2001

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed−-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data
    • 

    corecore