295 research outputs found

    Self-energy of a scalar charge near higher-dimensional black holes

    Full text link
    We study the problem of self-energy of charges in higher dimensional static spacetimes. Application of regularization methods of quantum field theory to calculation of the classical self-energy of charges leads to model-independent results. The correction to the self-energy of a scalar charge due to the gravitational field of black holes of the higher dimensional Majumdar-Papapetrou spacetime is calculated exactly. It proves to be zero in even dimensions, but it acquires non-zero value in odd dimensional spacetimes. The origin of the self-energy correction in odd dimensions is similar to the origin the conformal anomalies in quantum field theory in even dimensional spacetimes.Comment: 9 page

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    A Convergent Method for Calculating the Properties of Many Interacting Electrons

    Full text link
    A method is presented for calculating binding energies and other properties of extended interacting systems using the projected density of transitions (PDoT) which is the probability distribution for transitions of different energies induced by a given localized operator, the operator on which the transitions are projected. It is shown that the transition contributing to the PDoT at each energy is the one which disturbs the system least, and so, by projecting on appropriate operators, the binding energies of equilibrium electronic states and the energies of their elementary excitations can be calculated. The PDoT may be expanded as a continued fraction by the recursion method, and as in other cases the continued fraction converges exponentially with the number of arithmetic operations, independent of the size of the system, in contrast to other numerical methods for which the number of operations increases with system size to maintain a given accuracy. These properties are illustrated with a calculation of the binding energies and zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain, which is compared with analytic results for this system and extrapolations from finite rings of spins.Comment: 30 pages, 4 figures, corrected pd

    Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    Full text link
    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultra-fast processes with femtosecond resolution

    Correcting 100 years of misunderstanding: electric fields in superconductors, hole superconductivity, and the Meissner effect

    Full text link
    From the outset of superconductivity research it was assumed that no electrostatic fields could exist inside superconductors, and this assumption was incorporated into conventional London electrodynamics. Yet the London brothers themselves initially (in 1935) had proposed an electrodynamic theory of superconductors that allowed for static electric fields in their interior, which they unfortunately discarded a year later. I argue that the Meissner effect in superconductors necessitates the existence of an electrostatic field in their interior, originating in the expulsion of negative charge from the interior to the surface when a metal becomes superconducting. The theory of hole superconductivity predicts this physics, and associated with it a macroscopic spin current in the ground state of superconductors ("Spin Meissner effect"), qualitatively different from what is predicted by conventional BCS-London theory. A new London-like electrodynamic description of superconductors is proposed to describe this physics. Within this theory superconductivity is driven by lowering of quantum kinetic energy, the fact that the Coulomb repulsion strongly depends on the character of the charge carriers, namely whether electron- or hole-like, and the spin-orbit interaction. The electron-phonon interaction does not play a significant role, yet the existence of an isotope effect in many superconductors is easily understood. In the strong coupling regime the theory appears to favor local charge inhomogeneity. The theory is proposed to apply to all superconducting materials, from the elements to the high TcT_c cuprates and pnictides, is highly falsifiable, and explains a wide variety of experimental observations.Comment: Proceedings of the conference "Quantum phenomena in complex matter 2011 - Stripes 2011", Rome, 10 July -16 July 2011, to be published in J. Supercond. Nov. Mag

    A fully relativistic radial fall

    Full text link
    Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A {\it gedankenexperiment} in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this letter, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes an higher value of the maximal coordinate velocity, this value being reached earlier on during infall. In the second part of this letter, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.Comment: To appear in Int. J. Geom. Meth. Mod. Phy
    corecore