38 research outputs found

    Cytoplasmic chromatin triggers inflammation in senescence and cancer

    Get PDF
    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders

    Broadband Linear-Dichroic Photodetector in a Black Phosphorus Vertical p-n Junction

    Full text link
    The ability to detect light over a broad spectral range is central for practical optoelectronic applications, and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS2. However, polarization sensitivity within such a photodetector remains elusive. Here we demonstrate a linear-dichroic broadband photodetector with layered black phosphorus transistors, using the strong intrinsic linear dichroism arising from the in-plane optical anisotropy with respect to the atom-buckled direction, which is polarization sensitive over a broad bandwidth from 400 nm to 3750 nm. Especially, a perpendicular build-in electric field induced by gating in black phosphorus transistors can spatially separate the photo-generated electrons and holes in the channel, effectively reducing their recombination rate, and thus enhancing the efficiency and performance for linear dichroism photodetection. This provides new functionality using anisotropic layered black phosphorus, thereby enabling novel optical and optoelectronic device applications.Comment: 18 pages, 5 figures in Nature Nanotechnology 201

    Probing the Conformational Transition of 2,2′-Bipyridyl under External Field by Surface-Enhanced Raman Spectroscopy

    No full text
    Investigations on conformational transition of a small organic molecule are important to understand the conformation principles in chemistry and biology. We employed a low-temperature surface-enhanced Raman spectroscopy (LT-SERS) technique to probe the conformational changes of 2,2′-bipyridyl (22BPY) on Ag nanoparticles at the presence of external fields. An electrochemical system was used to provide an electrostatic field, and a special magnet was designed to supply a magneto-static field. High-quality and distinguishable SERS spectra of 22BPY were obtained at the different environments, which show fingerprint labels for correlative conformations of the 22BPY. The conformational transition of 22BPY is implemented via its adsorption on the Ag nanoparticles by triggers of the external electric field and magnetic field
    corecore