5,348 research outputs found
Nuclear modification of valence-quark distributions and its effects on NuTeV sin^2 theta_W anomaly
We investigated a nuclear modification difference between up- and
down-valence quark distributions by analyzing structure function F_2 and
Drell-Yan cross-section ratios. Although nuclear modifications of the
valence-quark distributions themselves are rather well determined, it is
difficult to find their difference from the present data. We estimated such an
effect on the NuTeV sin^2 theta_W value and its uncertainty by the Hessian
method. At this stage, it is not large enough to explain the whole NuTeV
anomaly. However, the modification difference cannot be precisely determined,
so that further studies are needed.Comment: 3 pages, LaTeX, 1 eps file, to be published in Proceedings of the 6th
International Workshop on Neutrino Factories and Superbeams (NuFact04
Shortage of vaccines during a yellow fever outbreak in Guinea.
A yellow fever epidemic erupted in Guinea in September, 2000. From Sept 4, 2000, to Jan 7, 2001, 688 instances of the disease and 225 deaths were reported. The diagnosis was laboratory confirmed by IgM detection in more than 40 patients. A mass vaccination campaign was limited by insufficient international stocks. After the epidemic in Guinea, the International Coordinating Group on Vaccine Provision for Epidemic Meningitis Control decided that 2 million doses of 17D yellow fever vaccine, being stored as part of a UNICEF stockpile, should be used only in response to outbreaks
Explaining Violation Traces with Finite State Natural Language Generation Models
An essential element of any verification technique is that of identifying and
communicating to the user, system behaviour which leads to a deviation from the
expected behaviour. Such behaviours are typically made available as long traces
of system actions which would benefit from a natural language explanation of
the trace and especially in the context of business logic level specifications.
In this paper we present a natural language generation model which can be used
to explain such traces. A key idea is that the explanation language is a CNL
that is, formally speaking, regular language susceptible transformations that
can be expressed with finite state machinery. At the same time it admits
various forms of abstraction and simplification which contribute to the
naturalness of explanations that are communicated to the user
Cd-vacancy and Cd-interstitial complexes in Si and Ge
The electrical field gradient (EFG), measured e.g. in perturbed angular
correlation (PAC) experiments, gives particularly useful information about the
interaction of probe atoms like 111In / 111Cd with other defects. The
interpretation of the EFG is, however, a difficult task. This paper aims at
understanding the interaction of Cd impurities with vacancies and interstitials
in Si and Ge, which represents a controversial issue. We apply two
complementary ab initio methods in the framework of density functional theory
(DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method
and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct
local geometry. Surprisingly we find that both in Si and Ge the substitutional
Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the
Cd on the bond-center site. This complex has a very small EFG, allowing a
unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si.
Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split
configuration with large EFGs, being in reasonable agreement with experiments
Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance
In this letter we present a real space density functional theory (DFT)
localized basis set semi-empirical pseudopotential (SEP) approach. The method
is applied to iron and magnesium oxide, where bulk SEP and local spin density
approximation (LSDA) band structure calculations are shown to agree within
approximately 0.1 eV. Subsequently we investigate the qualitative
transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find
that the SEP method is particularly well suited to address the tight binding
transferability problem because the transferability error at the interface can
be characterized not only in orbital space (via the interface local density of
states) but also in real space (via the system potential). To achieve a
quantitative parameterization, we introduce the notion of ghost semi-empirical
pseudopotentials extracted from the first-principles calculated Fe/MgO bonding
interface. Such interface corrections are shown to be particularly necessary
for barrier widths in the range of 1 nm, where interface states on opposite
sides of the barrier couple effectively and play a important role in the
transmission characteristics. In general the results underscore the need for
separate tight binding interface and bulk parameter sets when modeling
conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic
Vacancy complexes with oversized impurities in Si and Ge
In this paper we examine the electronic and geometrical structure of
impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si
the pairing of Sn with the vacancy produces a complex with the Sn-atom at the
bond center and the vacancy split into two half vacancies on the neighboring
sites. Within the framework of density-functional theory we use two
complementary ab initio methods, the pseudopotential plane wave (PPW) method
and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the
structure of vacancy complexes with 11 different sp-impurities. For the case of
Sn in Si, we confirm the split configuration and obtain good agreement with EPR
data of Watkins. In general we find that all impurities of the 5sp and 6sp
series in Si and Ge prefer the split-vacancy configuration, with an energy gain
of 0.5 to 1 eV compared to the substitutional complex. On the other hand,
impurities of the 3sp and 4sp series form a (slightly distorted) substitutional
complex. Al impurities show an exception from this rule, forming a split
complex in Si and a strongly distorted substitutional complex in Ge. We find a
strong correlation of these data with the size of the isolated impurities,
being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure
Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo
The CyIIIa·CAT fusion gene was injected into Strongylocentrotus purpuratus eggs, together with excess ligated competitor sequences representing subregions of the CyIIIa regulatory domain. In this construct, the chloramphenicol acetyltransferase (CAT) reporter gene is placed under the control of the 2300 nucleotide upstream regulatory domain of the lineage-specific CyIIIa cytoskeletal actin gene. CAT mRNA was detected by in situ hybridization in serial sections of pluteus stage embryos derived from the injected eggs. When carrier DNA lacking competitor CyIIIa fragments was coinjected with CyIIIa.CAT, CAT mRNA was observed exclusively in aboral ectoderm cells, i.e. the territory in which the CyIIIa gene itself is normally expressed (as also reported by us previously). The same result was obtained when five of seven different competitor subfragments bearing sites of DNA-protein interaction were coinjected. However, coinjection of excess quantities of either of two widely separated, nonhomologous fragments of the CyIIIa regulatory domain produced a dramatic ectopic expression of CAT mRNA in the recipient embryos. CAT mRNA was observed in gut, mesenchyme cells and oral ectoderm in these embryos. We conclude that these fragments contain regulatory sites that negatively control spatial expression of the CyIIIa gene
Overview of Project BETA: Best practices in Evaluation and Treatment of Agitation
[West J Emerg Med. 2012;13(1):1–2.
- …