797 research outputs found
Observations of [C II] 158 micron Line and Far-infrared Continuum Emission toward the High-latitude Molecular Clouds in Ursa Major
We report the results of a rocket-borne observation of [C II] 158\micron line
and far-infrared continuum emission at 152.5\micron toward the high latitude
molecular clouds in Ursa Major. We also present the results of a follow-up
observation of the millimeter ^{12}CO J=1-0 line over a selected region
observed by the rocket-borne experiment. We have discovered three small CO
cloudlets from the follow-up ^{12}CO observations. We show that these molecular
cloudlets, as well as the MBM clouds(MBM 27/28/29/30), are not gravitationally
bound. Magnetic pressure and turbulent pressure dominate the dynamic balance of
the clouds. After removing the HI-correlated and background contributions, we
find that the [C II] emission peak is displaced from the 152.5\micron and CO
peaks, while the 152.5\micron continuum emission is spatially correlated with
the CO emission. We interpret this behavior by attributing the origin of [C II]
emission to the photodissociation regions around the molecular clouds
illuminated by the local UV radiation field. We also find that the ratio of the
molecular hydrogen column density to velocity-integrated CO intensity is
1.19+-0.29x10^{20} cm^{-2} (K kms^{-1})^{-1} from the FIR continuum and the CO
data. The average [C II] /FIR intensity ratio over the MBM clouds is 0.0071,
which is close to the all sky average of 0.0082 reported by the FIRAS on the
COBE satellite. The average [C II]/CO ratio over the same regions is 420, which
is significantly lower than that of molecular clouds in the Galactic plane.Comment: 15 pages, LaTeX (aaspp4.sty) + 2 tables(apjpt4.sty) + 6 postscript
figures; accepted for publication in the Astrophysical Journal; Astrophys. J.
in press (Vol. 490, December 1, 1997 issue
High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud
We carried out an unbiased survey for massive dense cores in the giant
molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO,
13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15
cores are associated with IRAS point sources whose luminosities are larger than
10^4 Lo, which indicates that massive star formation is occuring within these
cores. Five cores including the two with IRAS sources are associated with MSX
point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of
which is associated with neither IRAS nor MSX point sources. This core shows
the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that
star formation is also occuring in the core. In total, six C18O cores out of 15
are experienced star formation, and at least 2 of 15 are massive-star forming
cores in the eta Car GMC. We found that massive star formation occurs
preferentially in cores with larger column density, mass, number density, and
smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores
in the eta Car GMC are characterized by large line width and Mvir/M on average
compared to the cores in other GMCs. We investigated the origin of a large
amount of turbulence in the eta Car GMC. We propose the possibility that the
large turbulence was pre-existing when the GMC was formed, and is now
dissipating. Mechanisms such as multiple supernova explosions in the Carina
flare supershell may have contributed to form a GMC with a large amount of
turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author
changed. Paper with high resolution figures is available at
http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar
Pulmonary Arterial Pressure Management Based on Oral Medicine for Pediatric Living Donor Liver Transplant With Portopulmonary Hypertension
Ueno T., Hiwatashi S., Saka R., et al. Pulmonary Arterial Pressure Management Based on Oral Medicine for Pediatric Living Donor Liver Transplant With Portopulmonary Hypertension. Transplantation Proceedings 50, 2614 (2018); https://doi.org/10.1016/J.TRANSPROCEED.2018.03.068.Pediatric living donor liver transplantation (LDLT) in patients with advanced portopulmonary hypertension (PoPH) is associated with poor prognoses. Recently, novel oral medications, including endothelin receptor antagonists (ERAs), phosphodiesterase 5 (PDE5) inhibitors, and oral prostacyclin (PGI2) have been used to treat PoPH. Pediatric patients with PoPH who underwent LDLT from 2006 to 2016 were enrolled. Oral pulmonary hypertension (PH) medication was administered to control pulmonary arterial pressure (PAP). Four patients had PoPH. Their ages ranged from 6 to 16 years, and their original diseases were biliary atresia (n = 2), portal vein obstruction (n = 1), and intrahepatic portal systemic shunt (n = 1). For preoperative management, 2 patients received continuous intravenous PGI2 and 2 oral medications (an ERA alone or an ERA and a PDE5 inhibitor), and 2 received only oral drugs (an ERA and a PDE5 inhibitor). One patient managed only with intravenous PGI2 died. In the remaining 3 cases, intravenous PGI2 or NO was discontinued before the end of the first postoperative week. Postoperative medications were oral PGI2 alone (n = 1), an ERA alone (n = 1), or the combination of an ERA and a PDE5 inhibitor (n = 1). An ERA was the first-line therapy, and a PDE5 inhibitor was added if there was no effect. New oral PH medications were effective and safe for use in pediatric patients following LDLT. In particular, these new oral drugs prevent the need for central catheter access to infuse PGI2
A deep wide-field sub-mm survey of the Carina Nebula complex
The Great Nebula in Carina is a superb location in which to study the physics
of violent massive star-formation and the resulting feedback effects, including
cloud dispersal and triggered star-formation. In order to reveal the cold dusty
clouds in the Carina Nebula complex, we used the Large APEX Bolometer Camera
LABOCA at the APEX telescope to map a 1.25 deg x 1.25 deg (= 50 x 50 pc^2)
region at 870 micrometer. From a comparison to Halpha images we infer that
about 6% of the 870 micrometer flux in the observed area is likely free-free
emission from the HII region, while about 94% of the flux is very likely
thermal dust emission. The total (dust + gas) mass of all clouds for which our
map is sensitive is ~ 60 000 Msun, in good agreement with the mass of the
compact clouds in this region derived from 13CO line observations. We generally
find good agreement in the cloud morphology seen at 870 micrometer and the
Spitzer 8 micrometer emission maps, but also identify a prominent infrared dark
cloud. Finally, we construct a radiative transfer model for the Carina Nebula
complex that reproduces the observed integrated spectral energy distribution
reasonably well. Our analysis suggests a total gas + dust mass of about 200000
Msun in the investigated area; most of this material is in the form of
molecular clouds, but a widely distributed component of (partly) atomic gas,
containing up to ~ 50% of the total mass, may also be present. Currently, only
some 10% of the gas is in sufficiently dense clouds to be immediately available
for future star formation, but this fraction may increase with time owing to
the ongoing compression of the strongly irradiated clouds and the expected
shockwaves of the imminent supernova explosions.Comment: Accepted for publication in Astronomy & Astrophysics; high-quality
pre-prints can be obtained from
http://www.usm.uni-muenchen.de/people/preibisch/publications.htm
The Spitzer c2d Survey of Nearby Dense Cores: VI. The Protostars of Lynds Dark Nebula 1221
Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are
presented. These data show three candidate protostars towards L1221, only two
of which were previously known. The infrared observations also show signatures
of outflowing material, an interpretation which is also supported by radio
observations with the Very Large Array. In addition, molecular line maps from
the Five College Radio Astronomy Observatory are shown.
One-dimensional dust continuum modelling of two of these protostars, IRS1 and
IRS3, is described. These models show two distinctly different protostars
forming in very similar environments. IRS1 shows a higher luminosity and larger
inner radius of the envelope than IRS3. The disparity could be caused by a
difference in age or mass, orientation of outflow cavities, or the impact of a
binary in the IRS1 core.Comment: accepted for publication in Ap
Clarifying Some Remaining Questions in the Anomaly Puzzle
We discuss several points that may help to clarify some questions that remain
about the anomaly puzzle in supersymmetric theories. In particular, we consider
a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the
question of whether there is a consistent way to put the R-current and the
stress tensor in a single supercurrent, even though in the classical theory
they are in the same supermultiplet. As is well known, the classically
conserved supercurrent bifurcates into two supercurrents having different
anomalies in the quantum regime. The most interesting result we obtain is an
explicit expression for the lowest component of one of the two supercurrents in
4-dimensional spacetime, namely the supercurrent that has the energy-momentum
tensor as one of its components. This expression for the lowest component is an
energy-dependent linear combination of two chiral currents, which itself does
not correspond to a classically conserved chiral current. The lowest component
of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen
theorem. The lowest component of the first supercurrent has an anomaly that we
show is consistent with the anomaly of the trace of the energy-momentum tensor.
Therefore, we conclude that there is no consistent way to put the R-current and
the stress tensor in a single supercurrent in the quantized theory. We also
discuss and try to clarify some technical points in the derivations of the
two-supercurrents in the literature. These latter points concern the
significance of infrared contributions to the NSVZ beta-function and the role
of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized.
new subsections (IVA, IVB) added. references adde
Recommended from our members
The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation
The bacterial flagellum is a remarkable molecular motor, whose primary function in bacteria is to facilitate motility through the rotation of a filament protruding from the bacterial cell. A cap complex, consisting of an oligomer of the protein FliD, is localized at the tip of the flagellum, and is essential for filament assembly, as well as adherence to surfaces in some bacteria. However, the structure of the intact cap complex, and the molecular basis for its interaction with the filament, remains elusive. Here we report the cryo-EM structure of the Campylobacter jejuni cap complex, which reveals that FliD is pentameric, with the N-terminal region of the protomer forming an extensive set of contacts across several subunits, that contribute to FliD oligomerization. We also demonstrate that the native C. jejuni flagellum filament is 11-stranded, contrary to a previously published cryo-EM structure, and propose a molecular model for the filament-cap interaction
Candidate X-ray-Emitting OB Stars in the Carina Nebula Identified Via Infrared Spectral Energy Distributions
We report the results of a new survey of massive, OB stars throughout the
Carina Nebula using the X-ray point source catalog provided by the Chandra
Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from
the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela--Carina
survey. Mid-IR photometry is relatively unaffected by extinction, hence it
provides strong constraints on the luminosities of OB stars, assuming that
their association with the Carina Nebula, and hence their distance, is
confirmed. We fit model stellar atmospheres to the optical (UBV) and IR
spectral energy distributions (SEDs) of 182 OB stars with known spectral types
and measure the bolometric luminosity and extinction for each star. We find
that the extinction law measured toward the OB stars has two components:
Av=1--1.5 mag produced by foreground dust with a ratio of total-to-selective
absorption Rv=3.1 plus a contribution from local dust with Rv>4.0 in the Carina
molecular clouds that increases as Av increases. Using X-ray emission as a
strong indicator of association with Carina, we identify 94 candidate OB stars
with Lbol\geq10^4 Lsun by fitting their IR SEDs. If the candidate OB stars are
eventually confirmed by follow-up spectroscopic observations, the number of
cataloged OB stars in the Carina Nebula will increase by ~50%. Correcting for
incompleteness due to OB stars falling below the Lbol cutoff or the CCCP
detection limit, these results potentially double the size of the young massive
stellar population.Comment: 19 pages, 8 figures, accepted for the ApJS Special Issue on the
Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011.
All 16 CCCP Special Issue papers, including a version of this article with
high-quality figures, are available at
http://cochise.astro.psu.edu/Carina_public/special_issue.html (through 2011
at least
- âŠ