784 research outputs found

    Observations of [C II] 158 micron Line and Far-infrared Continuum Emission toward the High-latitude Molecular Clouds in Ursa Major

    Get PDF
    We report the results of a rocket-borne observation of [C II] 158\micron line and far-infrared continuum emission at 152.5\micron toward the high latitude molecular clouds in Ursa Major. We also present the results of a follow-up observation of the millimeter ^{12}CO J=1-0 line over a selected region observed by the rocket-borne experiment. We have discovered three small CO cloudlets from the follow-up ^{12}CO observations. We show that these molecular cloudlets, as well as the MBM clouds(MBM 27/28/29/30), are not gravitationally bound. Magnetic pressure and turbulent pressure dominate the dynamic balance of the clouds. After removing the HI-correlated and background contributions, we find that the [C II] emission peak is displaced from the 152.5\micron and CO peaks, while the 152.5\micron continuum emission is spatially correlated with the CO emission. We interpret this behavior by attributing the origin of [C II] emission to the photodissociation regions around the molecular clouds illuminated by the local UV radiation field. We also find that the ratio of the molecular hydrogen column density to velocity-integrated CO intensity is 1.19+-0.29x10^{20} cm^{-2} (K kms^{-1})^{-1} from the FIR continuum and the CO data. The average [C II] /FIR intensity ratio over the MBM clouds is 0.0071, which is close to the all sky average of 0.0082 reported by the FIRAS on the COBE satellite. The average [C II]/CO ratio over the same regions is 420, which is significantly lower than that of molecular clouds in the Galactic plane.Comment: 15 pages, LaTeX (aaspp4.sty) + 2 tables(apjpt4.sty) + 6 postscript figures; accepted for publication in the Astrophysical Journal; Astrophys. J. in press (Vol. 490, December 1, 1997 issue

    High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud

    Full text link
    We carried out an unbiased survey for massive dense cores in the giant molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO, 13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15 cores are associated with IRAS point sources whose luminosities are larger than 10^4 Lo, which indicates that massive star formation is occuring within these cores. Five cores including the two with IRAS sources are associated with MSX point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of which is associated with neither IRAS nor MSX point sources. This core shows the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that star formation is also occuring in the core. In total, six C18O cores out of 15 are experienced star formation, and at least 2 of 15 are massive-star forming cores in the eta Car GMC. We found that massive star formation occurs preferentially in cores with larger column density, mass, number density, and smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores in the eta Car GMC are characterized by large line width and Mvir/M on average compared to the cores in other GMCs. We investigated the origin of a large amount of turbulence in the eta Car GMC. We propose the possibility that the large turbulence was pre-existing when the GMC was formed, and is now dissipating. Mechanisms such as multiple supernova explosions in the Carina flare supershell may have contributed to form a GMC with a large amount of turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author changed. Paper with high resolution figures is available at http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar

    A deep wide-field sub-mm survey of the Carina Nebula complex

    Full text link
    The Great Nebula in Carina is a superb location in which to study the physics of violent massive star-formation and the resulting feedback effects, including cloud dispersal and triggered star-formation. In order to reveal the cold dusty clouds in the Carina Nebula complex, we used the Large APEX Bolometer Camera LABOCA at the APEX telescope to map a 1.25 deg x 1.25 deg (= 50 x 50 pc^2) region at 870 micrometer. From a comparison to Halpha images we infer that about 6% of the 870 micrometer flux in the observed area is likely free-free emission from the HII region, while about 94% of the flux is very likely thermal dust emission. The total (dust + gas) mass of all clouds for which our map is sensitive is ~ 60 000 Msun, in good agreement with the mass of the compact clouds in this region derived from 13CO line observations. We generally find good agreement in the cloud morphology seen at 870 micrometer and the Spitzer 8 micrometer emission maps, but also identify a prominent infrared dark cloud. Finally, we construct a radiative transfer model for the Carina Nebula complex that reproduces the observed integrated spectral energy distribution reasonably well. Our analysis suggests a total gas + dust mass of about 200000 Msun in the investigated area; most of this material is in the form of molecular clouds, but a widely distributed component of (partly) atomic gas, containing up to ~ 50% of the total mass, may also be present. Currently, only some 10% of the gas is in sufficiently dense clouds to be immediately available for future star formation, but this fraction may increase with time owing to the ongoing compression of the strongly irradiated clouds and the expected shockwaves of the imminent supernova explosions.Comment: Accepted for publication in Astronomy & Astrophysics; high-quality pre-prints can be obtained from http://www.usm.uni-muenchen.de/people/preibisch/publications.htm

    The Spitzer c2d Survey of Nearby Dense Cores: VI. The Protostars of Lynds Dark Nebula 1221

    Get PDF
    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars towards L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modelling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.Comment: accepted for publication in Ap

    Clarifying Some Remaining Questions in the Anomaly Puzzle

    Full text link
    We discuss several points that may help to clarify some questions that remain about the anomaly puzzle in supersymmetric theories. In particular, we consider a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the question of whether there is a consistent way to put the R-current and the stress tensor in a single supercurrent, even though in the classical theory they are in the same supermultiplet. As is well known, the classically conserved supercurrent bifurcates into two supercurrents having different anomalies in the quantum regime. The most interesting result we obtain is an explicit expression for the lowest component of one of the two supercurrents in 4-dimensional spacetime, namely the supercurrent that has the energy-momentum tensor as one of its components. This expression for the lowest component is an energy-dependent linear combination of two chiral currents, which itself does not correspond to a classically conserved chiral current. The lowest component of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen theorem. The lowest component of the first supercurrent has an anomaly that we show is consistent with the anomaly of the trace of the energy-momentum tensor. Therefore, we conclude that there is no consistent way to put the R-current and the stress tensor in a single supercurrent in the quantized theory. We also discuss and try to clarify some technical points in the derivations of the two-supercurrents in the literature. These latter points concern the significance of infrared contributions to the NSVZ beta-function and the role of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized. new subsections (IVA, IVB) added. references adde

    Candidate X-ray-Emitting OB Stars in the Carina Nebula Identified Via Infrared Spectral Energy Distributions

    Full text link
    We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela--Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: Av=1--1.5 mag produced by foreground dust with a ratio of total-to-selective absorption Rv=3.1 plus a contribution from local dust with Rv>4.0 in the Carina molecular clouds that increases as Av increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with Lbol\geq10^4 Lsun by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by ~50%. Correcting for incompleteness due to OB stars falling below the Lbol cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.Comment: 19 pages, 8 figures, accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers, including a version of this article with high-quality figures, are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html (through 2011 at least

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables
    corecore