782 research outputs found

    Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5

    Full text link
    To study the nature of partially substituted Yb-ions in a Ce-based Kondo lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films using molecular beam epitaxy. We find that the Yb-substitution leads to a linear decrease of the unit cell volume, indicating that Yb-ions are divalent forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of the superconductivity and Kondo coherence. These results, combined with the measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity scatters in the coherent Kondo lattice without serious suppression of the antiferromagnetic fluctuations. These are in stark contrast to previous studies performed using bulk single crystals, which claim the importance of valence fluctuations of Yb-ions. The present work also highlights the suitability of epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure

    Cryostat to provide a solid deuterium layer in a plastic shell for the Gekko XII glass laser system

    Full text link
    Copyright 1992 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, 63(6), 3378-3383, 1992 and may be found at http://dx.doi.org/10.1063/1.114255

    Anomalous Stability of nu=1 Bilayer Quantum Hall State

    Full text link
    We have studied the fractional and integer quantum Hall (QH) effects in a high-mobility double-layer two-dimensional electron system. We have compared the "stability" of the QH state in balanced and unbalanced double quantum wells. The behavior of the n=1 QH state is found to be strikingly different from all others. It is anomalously stable, though all other states decay, as the electron density is made unbalanced between the two quantum wells. We interpret the peculiar features of the nu=1 state as the consequences of the interlayer quantum coherence developed spontaneously on the basis of the composite-boson picture.Comment: 5 pages, 6 figure

    Ultra-wide Spectral Bandwidth and Enhanced Absorption in a Metallic Compound Grating Covered by Graphene Monolayer

    Get PDF
    Graphene, a two-dimensional monatomic layer of carbon material, has demonstrated as a good candidate for applications of ultrafast photodetectors, transistors, transparent electrodes, and biosensing. Recently, many studies have shown that using metallic deep gratings could enhance the absorptance of graphene of 2.3% up to 80% in the near infrared region for applications in photon detection. This paper presents utilizing a nanograting structure, namely, a compound metallic grating could greatly enhance the absorptance of graphene to 100% and widen its spectral bandwidth to 600 nm, which are greater than those of previous work. The study also showed that the absorptance spectrum is insensitive to angles of incidence. Furthermore, the proposed graphene-covered compound grating might bring a lot of benefits for graphene designs-based optical and optoelectronic devices

    Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

    Full text link
    We investigate the two-orbital periodic Anderson model, where the local orbital fluctuations of f-electrons couple with a two-fold degenerate Jahn-Teller phonon, by using the dynamical mean-field theory. It is found that the heavy fermion state caused by the Coulomb interaction between f-electrons U is largely enhanced due to the electron-phonon coupling g, in contrast to the case with the single-orbital periodic Anderson model where the effects of U and g compete to each other. In the heavy fermion state for large UU and g, both the orbital and lattice fluctuations are enhanced, while the charge (valence) and spin fluctuations are suppressed. In the strong coupling regime, a sharp soft phonon mode with a large spectral weight is observed for small U, while a broad soft phonon mode with a small spectral weight is observed for large U. The cooperative effect of U and g for half-filling with two f-electrons per atom nf=2n_f=2 is more pronounced than that for quarter-filling with nf=1n_f=1.Comment: 8 pages, 11 figures, accepted for publication in JPS

    Anomalous Upper Critical Field in CeCoIn_5/YbCoIn_5 Superlattices with a Rashba-type Heavy Fermion Interface

    Full text link
    We report a highly unusual angular variation of the upper critical field (H_c2) in epitaxial superlattices CeCoIn_5(n)/YbCoIn_5(5), formed by alternating layers of n and a 5 unit-cell thick heavy-fermion superconductor CeCoIn_5 with a strong Pauli effect and normal metal YbCoIn_5, respectively. For the n=3 superlattice, H_{c2}(\theta) changes smoothly as a function of the field angle \theta. However, close to the superconducting transition temperature, H_{c2}(\theta) exhibits a cusp near the parallel field (\theta=0 deg). This cusp behavior disappears for n=4 and 5 superlattices. This sudden disappearance suggests the relative dominance of the orbital depairing effect in the n=3 superlattice, which may be due to the suppression of the Pauli effect in a system with local inversion symmetry breaking. Taking into account the temperature dependence of H_{c2}(\theta) as well, our results suggest that some exotic superconducting states, including a helical superconducting state, might be realized at high magnetic fields.Comment: 5 pages, 5 figure

    Phase Transition in \nu=2 Bilayer Quantum Hall State

    Get PDF
    The Hall-plateau width and the activation energy were measured in the bilayer quantum Hall state at filling factor \nu=2, 1 and 2/3, by changing the total electron density and the density ratio in the two quantum wells. Their behavior are remarkably different from one to another. The \nu=1 state is found stable over all measured range of the density difference, while the \nu=2/3$ state is stable only around the balanced point. The \nu=2 state, on the other hand, shows a phase transition between these two types of the states as the electron density is changed.Comment: 5 pages including figures, RevTe
    corecore