1,471 research outputs found

    Duration of untreated bipolar disorder: A multicenter study

    Get PDF
    Little is known about the demographic and clinical differences between short and long duration of untreated bipolar disorder (DUB) in Chinese patients. This study examined the demographic and clinical features of short (≤2 years) and long DUB (\u3e2 years) in China. A consecutively recruited sample of 555 patients with bipolar disorder (BD) was examined in 7 psychiatric hospitals and general hospital psychiatric units across China. Patients’ demographic and clinical characteristics were collected using a standardized protocol and data collection procedure. The mean DUB was 3.2 ± 6.0 years; long DUB accounted for 31.0% of the sample. Multivariate analyses revealed that longer duration of illness, diagnosis of BD type II, and earlier misdiagnosis of BD for major depressive disorder or schizophrenia were independently associated with long DUB. The mean DUB in Chinese BD patients was shorter than the reported figures from Western countries. The long-term impact of DUB on the outcome of BD is warranted

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure

    Some properties of the newly observed X(1835) state at BES

    Full text link
    Recently the BES collaboration has announced observation of a resonant state in the π+πη\pi^+\pi^- \eta' spectrum in J/ψγπ+πηJ/\psi \to \gamma \pi^+\pi^-\eta' decay. Fitting the data with a 0+0^{-+} state, the mass is determined to be 1833.7 MeV with 7.7σ7.7\sigma statistic significance. This state is consistent with the one extracted from previously reported ppˉp \bar p threshold enhancement data in J/ψγppˉJ/\psi \to \gamma p \bar p. We study the properties of this state using QCD anomaly and QCD sum rules assuming X(1835) to be a pseudoscalar and show that it is consistent with data. We find that this state has a sizeable matrix element leading to branching ratios of (2.617.37)×103(2.61\sim 7.37)\times 10^{-3} and (2.2110.61)×102(2.21\sim 10.61)\times 10^{-2} for J/ψγGpJ/\psi \to \gamma G_p and for Gpπ+πηG_p \to \pi^+\pi^- \eta', respectively. Combining the calculated branching ratio of J/ψγGpJ/\psi \to \gamma G_p and data on threshold enhancement in J/ψγppˉJ/\psi \to \gamma p \bar p, we determine the coupling for GpppˉG_p- p-\bar p interaction. We finally study branching ratios of other J/ψγ+threemesonsJ/\psi \to \gamma + {three mesons} decay modes. We find that J/ψγGpγ(π+πη,KKπ0)J/\psi \to \gamma G_p \to \gamma (\pi^+\pi^- \eta, K K \pi^0) can provide useful tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ

    N N bar,Delta bar N, Delta N bar excitation for the pion propagator in nuclear matter

    Full text link
    The particle-hole and Delta -hole excitations are well-known elementary excitation modes for the pion propagator in nuclear matter. But, the excitation also involves antiparticles, namely, nucleon-antinucleon, anti-Delta-nucleon and Delta-antinucleon excitations. These are important for high-energy momentum as well, and have not been studied before, to our knowledge. In this paper, we give both the formulas and the numerical calculations for the real and the imaginary parts of these excitations.Comment: Latex, 3 eps file

    Δ\Delta-scaling and Information Entropy in Ultra-Relativistic Nucleus-Nucleus Collisions

    Full text link
    The Δ\Delta-scaling method has been applied to ultra-relativistic p+p, C+C and Pb+Pb collision data simulated using a high energy Monte Carlo package, LUCIAE 3.0. The Δ\Delta-scaling is found to be valid for some physical variables, such as charged particle multiplicity, strange particle multiplicity and number of binary nucleon-nucleon collisions from these simulated nucleus-nucleus collisions over an extended energy ranging from ElabE_{lab} = 20 to 200 A GeV. In addition we derived information entropy from the multiplicity distribution as a function of beam energy for these collisions.Comment: 4 pages, 4 figures, 1 table; to appear in the July Issue of Chin. Phys. Lett.. Web Page: http://www.iop.org/EJ/journal/CP

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    Geometrical structure effect on localization length of carbon nanotubes

    Full text link
    The localization length and density of states of carbon nanotubes are evaluated within the tight-binding approximation. By comparison with the corresponding results for the square lattice tubes, it is found that the hexagonal structure affects strongly the behaviors of the density of states and localization lengths of carbon nanotubes.Comment: 7 pages, 4 figures, revised version to appear in Chin. Phys. Lett. The title is changed. Some arguments are adde

    A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    Full text link
    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30^{30}Si + 243^{243}Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12] and [19

    Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films

    Full text link
    We have studied the magnetotransport properties in the normal state for a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and 0.12. A variable degree of compressive or tensile strain results from the lattice mismatch between the substrate and the film, and affects the transport properties differently from the influence of the zinc impurities. In particular, the orbital magnetoresistance (OMR) varies with y but is strain-independent. The relations for the resistivity and the Hall angle and the proportionality between the OMR and tan^2 theta are followed about 70 K. We have been able to separate the strain and impurity effects by rewriting the above relations, where each term is strain-independent and depends on y only. We also find that changes in the lattice constants give rise to closely the same fractional changes in other terms of the equation.The OMR is more strongly supressed by the addition of impurities than tan^2 theta. We conclude that the relaxation ratethat governs Hall effect is not the same as for the magnetoresistance. We also suggest a correspondence between the transport properties and the opening of the pseudogap at a temperature which changes when the La-sr ratio changes, but does not change with the addition of the zinc impurities

    Coherent Potential Approximation for `d - wave' Superconductivity in Disordered Systems

    Get PDF
    A Coherent Potential Approximation is developed for s-wave and d-wave superconductivity in disordered systems. We show that the CPA formalism reproduces the standard pair-breaking formula, the self-consistent Born Approximation and the self-consistent T-matrix approximation in the appropriate limits. We implement the theory and compute T_c for s-wave and d-wave pairing using an attractive nearest neighbor Hubbard model featuring both binary alloy disorder and a uniform distribution of scattering site potentials. We determine the density of states and examine its consequences for low temperature heat capacity. We find that our results are in qualitative agreement with measurements on Zn doped YBCO superconductors.Comment: 35 pages, 23 figures, submitted to Phys Rev.
    corecore