3,989 research outputs found

    Equilibrium spin pulsars unite neutron star populations

    Full text link
    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA

    Sparse polynomial prediction

    Get PDF

    On the accretion mode of the intermediate polar V1025 Centauri

    Get PDF
    The long white-dwarf spin periods in the magnetic cataclysmic variables EX Hya and V1025 Cen imply that if the systems possess accretion discs then they cannot be in equilibrium. It has been suggested that instead they are discless accretors in which the spin-up torques resulting from accretion are balanced by the ejection of part of the accretion flow back towards the secondary. We present phase-resolved spectroscopy of V1025 Cen aimed at deducing the nature of the accretion flow, and compare this with simulations of a discless accretor. We find that both the conventional disc-fed model and the discless-accretor model have strengths and weaknesses, and that further work is needed before we can decide which applies to V1025 Cen.Comment: 9 pages, 8 figures, To appear in MNRAS, includes low-res figures to reduce siz

    DD-optimal saturated designs: a simulation study

    Full text link
    In this work we focus on saturated DD-optimal designs. Using recent results, we identify DD-optimal designs with the solutions of an optimization problem with linear constraints. We introduce new objective functions based on the geometric structure of the design and we compare them with the classical DD-efficiency criterion. We perform a simulation study. In all the test cases we observe that designs with high values of DD-efficiency have also high values of the new objective functions.Comment: 8 pages. Preliminary version submitted to the 7th IWS Proceeding

    Informed citizen and empowered citizen in health: results from an European survey

    Get PDF
    Background: The knowledge about the relationship between health-related activities on the Internet (i.e. informed citizens) and individuals? control over their own experiences of health or illness (i.e. empowered citizens) is valuable but scarce. In this paper, we investigate the correlation between four ways of using the Internet for information on health or illness and citizens attitudes and behaviours toward health professionals and health systems and establish the profile of empowered eHealth citizens in Europe. Methods: Data was collected during April and May 2007 (N = 7022), through computer-assisted telephone interviews (CATI). Respondents from Denmark, Germany, Greece, Latvia, Norway, Poland and Portugal participated in the survey. The profiles were generated using logistic regressions and are based on: a) socio-demographic and health information, b) the level of use of health-related online services, c) the level of use of the Internet to get health information to decide whether to consult a health professional, prepare for a medical appointment and assess its outcome, and d) the impact of online health information on citizens? attitudes and behavior towards health professionals and health systems. Results: Citizens using the Internet to decide whether to consult a health professional or to get a second opinion are likely to be frequent visitors of health sites, active participants of online health forums and recurrent buyers of medicines and other health related products online, while only infrequent epatients, visiting doctors they have never met face-to-face. Participation in online health communities seems to be related with more inquisitive and autonomous patients. Conclusions: The profiles of empowered eHealth citizens in Europe are situational and country dependent. The number of Europeans using the Internet to get health information to help them deal with a consultation is raising and having access to online health information seems to be associated with growing number of inquisitive and self-reliant patients. Doctors are increasingly likely to experience consultations with knowledgeable and empowered patients, who will challenge them in various ways

    Generalised design: interpolation and statistical modelling over varieties

    Get PDF

    R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars

    Get PDF
    Recent work has shown that a young, rapidly rotating neutron star loses angular momentum to gravitational waves generated by unstable r-mode oscillations. We study the spin evolution of a young, magnetic neutron star including both the effects of gravitational radiation and magnetic braking (modeled as magnetic dipole radiation). Our phenomenological description of nonlinear r-modes is similar to, but distinct from, that of Owen et al. (1998) in that our treatment is consistent with the principle of adiabatic invariance in the limit when direct driving and damping of the mode are absent. We show that, while magnetic braking tends to increase the r-mode amplitude by spinning down the neutron star, it nevertheless reduces the efficiency of gravitational wave emission from the star. For B >= 10^14 (\nus/300 Hz)^2 G, where \nus is the spin frequency, the spindown rate and the gravitational waveforms are significantly modified by the effect of magnetic braking. We also estimate the growth rate of the r-mode due to electromagnetic (fast magnetosonic) wave emission and due to Alfven wave emission in the neutron star magnetosphere. The Alfven wave driving of the r-mode becomes more important than the gravitational radiation driving when B >= 10^13 (\nus/150 Hz)^3 G; the electromagnetic wave driving of the r-mode is much weaker. Finally, we study the properties of local Rossby-Alfven waves inside the neutron star and show that the fractional change of the r-mode frequency due to the magnetic field is of order 0.5 (B/10^16 G)^2 (\nus/100 Hz)^-2.Comment: 18 pages, 4 figures; ApJ, accepted (v544: Nov 20, 2000); added two footnotes and more discussion of mode driving by Alfven wave
    • …
    corecore