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Generalised design: Interpolation and
statistical modeling over varieties

In the classical formulation an experimental design is a set of sites at

each of which an observation is taken on a response Y . The algebraic

method treats the design as giving an “ideal of points” from which po-

tential monomial bases for a polynomial regression can be derived. If

the Gröbner basis method is used then the monomial basis depends on

the monomial term ordering. The full basis has the same number of

terms as the number of design points and gives an exact interpolator for

the Y -values over the design points. Here the notation of design point

is generalized to a variety. Observation means, in theory, that one ob-

serves the value of the response on the variety. A design is a union of

varieties and the assumption is, then, that on each variety we observe

the response. The task is to construct an interpolator for the function

between the varieties. Motivation is provided by transect sampling in a

number of fields. Much of the algebraic theory extends to the general

case. But special issues arise including the consistency of interpolation

at the intersection of the varieties and the consequences of taking a

design of points restricted to the varieties.

1.1 Introduction

Experimental design is defined simply as the choice of sites, or obser-

vation points, at which to observe a response, or output. A set of such

points is the experimental design. Terminology varies according to the

field. Thus, sites may be called “treatment combinations”, “input con-

figurations”, “runs”, “data points” and so on. For example in interpola-

tion theory “observation point” is common. Whatever the terminology

or field we can nearly always code up the notion of an observation point

2



1.1 Introduction 3

as a single point in k dimensions which represents a single combination

of levels of k independent variables.

The purpose of this paper is to extend the notation of an observation

point to a whole algebraic variety. An experimental design is then a

union of such varieties. An observation would be the acquired knowledge

of the restriction of the response to the variety. This is an idealization,

but one with considerable utility. It may be, for example that one models

the restriction of the response to each variety by a separate polynomial.

An important example of sampling via a variety is transect sampling.

This is a method used in the estimation of species abundance in ecology

and geophysics. A key text is Buckland et al. (1993) and the meth-

ods are developed further in Mack & Quang (1998). There one collects

information about the distance of objects from the transects and tries

to estimate the average density of the objects in the region of interest,

namely to say something about a feature connected with the whole re-

gion. A useful idea is that of “reconstruction”; one tries to reconstruct

a function given the value on the transects. This reconstruction we in-

terpret here as “interpolation”, or perhaps we should say “generalized”

interpolation. Other examples are geophysics, tomography, computer

vision and imaging.

Our task is to extend the algebraic methods used for observation

points to this generalized type of experimental design and interpolation.

Within this, the main issue is to create monomial bases to interpolate

between the varieties on which we observe. At one level this is a straight-

forward extension, but there are a number of special constructions and

issues the discussion of which should provide an initial guide to the area.

(i) The most natural generalization is to the case where the varieties

are hyperplanes, and therefore we shall be interested in hyper-

plane arrangements. This covers the case of lines in two dimen-

sions, the traditional transects mentioned above.

(ii) There are consistency issues when the varieties intersect: the ob-

servation on the varieties must agree on the intersection.

(iii) Since observing a whole function on a variety may be unrealis-

tic one can consider traditional point designs restricted to the

varieties. That is, we may use standard polynomial interpola-

tion on the varieties and then combine the results to interpolate

between varieties, but having in mind the consistency issue just

mentioned.

(iv) It is also natural to use power series expansions on each variety:
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is it possible to extend the algebraic interpolation methods to

power series? We are here only able to touch on the answer.

We now recall some basic ideas. Interpolation is the construction of

a function f(x) that coincides with observed data at n given observa-

tion points. That is, for a finite set of distinct points D = {d1, . . . , dn},
d1, . . . , dn ∈ Rk and observation values y1, . . . , yn ∈ R, we build a func-

tion such that f(di) = yi, i = 1, . . . , n. We set our paper within design

of experiments theory where the design is a set of points D, n is the

design (sample) size and k is the number of factors. Approaches to in-

terpolation range from statistically oriented techniques such as kriging,

see Stein (1999), to more algebraic techniques involving polynomials,

splines or operator theory, see Phillips (2003) and Sakhnovich (1997).

Pistone & Wynn (1996) build polynomial interpolators using an iso-

morphism between the following real vector spaces: the set of real valued

polynomial functions defined over the design, φ : D −→ R, and the quo-

tient ring R[x1, . . . , xk]/I(D). To construct the quotient ring they first

consider the design D as the set of solutions to a system of polynomial

equations. Then this design corresponds to the design ideal I(D), that

is the set of all polynomials in R[x1, . . . , xk] that vanish over the points

in D. The polynomial interpolator has n terms and is constructed using

a basis for R[x1, . . . , xk]/I(D) called standard monomials.

This algebraic method of constructing polynomial interpolators can

be applied to, essentially, any finite set of points, see for example Holli-

day et al. (1999) and Pistone et al. (2006). In fractional factorial designs

it has lead to the use of indicator functions, see Fontana et al. (1997),

Pistone & Rogantin (2008). Another example arises when the design

is a mixture, i.e. the coordinate values of each point in D add up to

one. In such a case the equation
∑k

i=1 xi = 1 is incorporated into the

design ideal, namely the polynomial
∑k

i=1 xi−1 ∈ I(D), see Giglio et al.

(2001). More recently, Maruri-Aguilar et al. (2007) used projective alge-

braic geometry and considered the projective coordinates of the mixture

points. Their technique allows the identification of the support for a

homogeneous polynomial model.

If, instead of a set of points, we consider the design as an affine variety,

then the algebraic techniques discussed are still valid. As a motivating

example, consider the circle in two dimensions with radius two and center

at the origin. Take the radical ideal generated by the circle as its design

ideal, i.e. the ideal generated by x2
1 + x2

2 − 4. The set of standard

monomials is infinite in this case. For a monomial order with initial
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order x2 ≺ x1, the set of standard monomials is {xj
2, x1x

j
2 : j ∈ Z≥0},

and can be used to interpolate over the circle. However, a number of

questions arise: What is the interpretation of observation on such a

variety? What method of statistical analysis should be used?

In this paper, then, we are concerned with extending interpolation to

when the design no longer comprises a finite set of points, but it is defined

as the union of a finite number of affine varieties, see Definition 1. Only

real affine varieties (without repetition) and the radical ideals generated

by them are considered. Real affine varieties can be linked to complex

varieties, see Whitney (1957) for an early discussion on properties of real

varieties. In Section 1.2.2 we study the case when the design V comprises

the union of (k−1)-dimensional hyperplanes. In Section 1.2.3 we present

the case, when every affine variety is an intersection of hyperplanes. The

following is a motivating example of such linear varieties.

Example 1 Consider a general bivariate Normal distribution (X1, X2)
T ∼

N
(

(µ1, µ2)
T , Σ

)

with

Σ =

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

,

where σ1, σ2 are real positive numbers, and ρ ∈ [−1, 1] ⊂ R. Now when

Σ is fixed, log p(x1, x2) is a quadratic form in µ1, µ2, where p(x1, x2) is

the normal bivariate density function. Imagine that, instead of observing

at a design point, we are able to observe log p(x1, x2) over a set of lines

Vi, i = 1, . . . , n. That is, the design V is a union of lines (transects), and

suppose we have perfect transect sampling on every line on the design.

This means that we know the value of log p(x1, x2) on every line.

The question is: how do we reconstruct the entire distribution? Are

there any conditions on the transect location?

We do not attempt to resolve these issues here. Rather we present the

ideas as a guide to experimentation on varieties in the following sense.

If I(V) is the design ideal, then the quotient ring R[x1, . . . , xk]/I(V) is

no longer of finite dimension, but we can still obtain a basis for it and

use it to construct statistical models for data observed on V .

Even though we can create a theory of interpolation by specifying, or

“observing” polynomial functions on a fixed variety V , we may wish to

observe a point set design D which is a subset of V . In Section 1.3 we

present this alternative, that is, to subsample a set of points D from a

general design V .
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If instead, a polynomial function is given at every point on the alge-

braic variety, it is often possible to obtain a general interpolator which

in turn coincides with the individual given functions. In Section 1.4 we

give a simple technique for building an interpolator over a design and

in Section 1.5 we survey the interpolation algorithm due to Becker &

Weispfenning (1991). A related approach is to obtain a reduced expres-

sion for an analytic function defined over a design, which is discussed in

Section 1.6. In Section 1.7 we discuss further extensions.

1.2 Definitions

In this Section we restrict to only the essential concepts for the develop-

ment of the theory, referring the reader to the books in algebraic geom-

etry by Cox et al. (1997), Kreuzer & Robbiano (2000) and Kreuzer &

Robbiano (2005); we also refer the reader to the monograph in algebraic

statistics by Pistone et al. (2001).

An affine algebraic set is the solution in Rk of a finite set of polynomi-

als. The affine algebraic set of a polynomial ideal J is Z(J). The set of

polynomials which vanish on a set of points W in Rk is the polynomial

ideal I(W ), which is radical. Over an algebraically closed field, such

as C, the ideal I(Z(J)) coincides with the radical ideal
√

J . However,

when working on R, which is not algebraically closed, the above does

not necessarily hold.

Example 2 Take J = 〈x3−1〉 ⊂ R[x], i.e. the ideal generated by x3−1.

Therefore Z(J) = {1} and I(Z(J)) = 〈x − 1〉. However J is a radical

ideal and yet I(Z(J)) 6= J .

Recall that for W ⊂ Rk, the set Z(I(W )) is the closure of W with re-

spect to the Zariski topology on Rk. There is a one to one correspondence

between closed algebraic sets in Rk and radical ideals in R[x1, . . . , xk]

such that I(Z(J)) = J .

Example 3 Consider I = 〈x2〉 ⊂ R[x]. Clearly I is not a radical ideal.

However, its affine algebraic set is Z(I) = {0}, which is irreducible.

A real affine variety V is the affine algebraic set associated to a prime

ideal. Remind that an algebraic variety V is irreducible, whenever V is

written as the union of two affine varieties V1 and V2 then either V = V1

or V = V2.
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Definition 1 A design variety V is affine variety in Rk which is the

union of irreducible varieties, i.e. for V1, . . . ,Vn irreducible varieties,

V =
⋃n

i=1 Vi.

We next review quotient rings and normal forms computable with the

variety ideal I(V).

Two polynomials f, g ∈ R[x1, . . . , xk] are congruent modulo I(V) if f−
g ∈ I(V). The quotient ring R[x1, . . . , xk]/I(V) is the set of equivalence

classes for congruence modulo I(V). The ideal of leading terms of I(V)

is the monomial ideal generated by the leading terms of polynomials in

I(V), which is written as 〈LT(I(V))〉 = 〈LT(f) : f ∈ I(V)〉.
Two isomorphisms are considered. Firstly, as real vector space, the

quotient ring R[x1, . . . , xk]/〈LT(I(V))〉 is isomorphic to R[x1, . . . , xk]/I(V).

Secondly, the quotient ring R[x1, . . . , xk]/I(V) is isomorphic (as real vec-

tor space) to R[V ], the set of polynomial functions defined on V .

For a fixed monomial ordering ≺, let G be a Gröbner basis for I(V)

and let L≺(I(V)) be the set of all monomials that cannot be divided by

the leading terms of the Gröbner basis G, that is

L≺(I(V)) := {xα ∈ T k : xα is not divisible by LT≺(g), g ∈ G} (1.1)

where T k is the set of all monomials in x1, . . . , xk. This set of monomials

is known as the set of standard monomials, and when there is no am-

biguity, we refer to it simply as L(V). We reformulate in the setting of

interest of this paper the following proposition (Cox et al. 1997, Section

5§3, Proposition 4).

Proposition 1 Let I(V) ⊂ R[x1, . . . , xk] be a radical ideal. Then

R[x1, . . . , xk]/〈LT(I(V))〉 is isomorphic as a R-vector space to the poly-

nomials which are real linear combinations of monomials in L(V).

In other words, the monomials in L(V) are linearly independent mod-

ulo 〈LT(I(V))〉. By the two isomorphisms above, monomials in L(V)

form a basis for the quotient ring R[x1, . . . , xk]/I(V) and for polyno-

mial functions on V . The division of a polynomial f by the elements

of a Gröbner basis for I(V) leads to a remainder r which is a linear

combinations of monomials in L(V), which is called the normal form of

f .

Theorem 1 (Cox et al. 1997, Section 2§3, Theorem 3) Let I(V) be

the ideal of a design variety V; let ≺ be a fixed monomial order on

R[x1, . . . , xk] and let G = {g1, . . . , gm} be a Gröbner basis for I(V) with
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respect to ≺. Then every polynomial f ∈ R[x1, . . . , xk] can be expressed

as f =
∑m

i=1 gihi + r, where h1, . . . hm ∈ R[x] and r is a linear combi-

nation of monomials in L(V).

We have that f − r ∈ I(V) and, in the spirit of this paper, we say that

the normal form r interpolates f on V . That is, f and r coincide over

V . We may write r = NF≺(f,V) to denote the normal form of f with

respect to the ideal I(V) and the monomial ordering ≺.

1.2.1 Designs of points

The most elementary experimental point design has a single point d1 =

(d11, . . . , d1k) ∈ Rk, whose ideal is I(d1) = 〈x1 − d11, . . . , xk − d1k〉.
An experimental design in statistics is the set of distinct points D =

{d1, . . . , dn}, whose corresponding ideal is the following intersection:

I(D) =

n
⋂

i=1

I(di). (1.2)

Example 4 For D = {(0, 0), (1, 0), (1, 1), (2, 1)} ⊂ R2, the set G =

{x3
1 − 3x2

1 + 2x1, x
2
1 − 2x1x2 − x1 + 2x2, x

2
2 − x2} is a Gröbner basis for

I(D). If we set a monomial order for which x2 ≺ x1 then the leading

terms of G are x3
1, x

2
2 and x2

1 and thus L(D) = {1, x1, x2, x1x2}. Any

real-valued polynomial function defined over D can be expressed as a

linear combination of monomials in L(D).

That is, for any function f : D −→ R, there is a unique polynomial

r(x1, x2) = c0 + c1x1 + c2x2 + c12x1x2 where the constants c0, c1, c2, c12

are real numbers whose coefficients can be determined by solving the

linear system of equations r(di) = f(di) for di ∈ D. In particular if we

observe real values yi at di ∈ D, in statistical terms, r is a saturated

model. For example, if we observe the data 2, 1, 3,−1 at the points in

D then r = 2 − x1 + 5x2 − 3x1x2 is the saturated model for the data.

1.2.2 Designs of hyperplane arrangements

Let H(a, c) be the ((k − 1)-dimensional) affine hyperplane directed by a

non-zero vector a ∈ Rk and with intercept c ∈ R, i.e.

H(a, c) =
{

x = (x1, . . . , xk) ∈ R
k : la(x) − c = 0

}
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with la(x) :=
∑n

i=1 aixi. Now for a set of vectors a1, . . . , an ∈ Rk, and

real scalars c1, . . . , cn, the hyperplane arrangement A is the union of the

affine hyperplanes H(ai, ci), that is

A =
n
⋃

i=1

H(ai, ci). (1.3)

We restrict the hyperplane arrangement to consist of distinct hyper-

planes, i.e. no repetitions. The polynomial QA(x) :=
∏n

i=1 (lai
(x) − ci)

is called the defining polynomial of A. Combinatorial properties of hy-

perplane arrangements have been studied extensively in the mathemat-

ical literature, see (Grünbaum 2003, Chapter 18).

Clearly A is a variety as in Definition 1, I(A) is a radical ideal and

it is generated by QA(x). Furthermore for any monomial ordering ≺,

{QA(x)} is a Gröbner basis for I(A).

Example 5 Let ai be the i-th unit vector and ci = 0 for i = 1, . . . , k,

then QA(x) = x1 · · ·xk and A comprises the k coordinate hyperplanes.

Example 6 The braid arrangement plays an important role in combi-

natorial studies of arrangements. It has defining polynomial QA(x) =
∏

(xi − xj − 1), where the product is carried on i, j : 1 ≤ i < j ≤ k, see

Stanley (1996).

In the arrangement generated by the k coordinate hyperplanes of Ex-

ample 5 and for any monomial order, the set of standard monomials

comprises all monomials which miss at least one indeterminate, and this

set does not depend on the term ordering used. For other hyperplane

arrangements, the leading term of QA(x) may depend on the actual

monomial order used. We have the following elementary result, which

we state without proof.

Lemma 2 Let A be an arrangement of n hyperplanes as in Equation

(1.3). Then for any monomial ordering, the total degree of LT≺(QA(x))

is n.

Lemma 2 implies that the set of standard monomials for A always

contains all monomials up to a total degree n−1. This result can be used

in conjunction with the methodology of Section 1.3: an arrangement of

n hyperplanes has the potential to identify a full model of total degree

n − 1.
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1.2.3 Generalised linear designs (GLDs)

The design variety in Section 1.2.2 can be generalised to include unions

of intersections of distinct hyperplanes. Namely, V =
⋃n

i=1 Vi where

Vi =
⋂ni

j=1 H(ai
j , c

i
j) where ai

j are non-zero vectors in Rk and ci
j ∈ Rk

for j = 1, . . . , ni i = 1, . . . , n and n and n1, . . . , nn are positive integers.

Consequently, the design ideal is the intersection of sums of ideals

I(V) =

n
⋂

i=1

ni
∑

j=1

I(H(ai
j , c

i
j)).

Example 7 Let V ⊂ R3 be constructed by the union of the following

eleven affine sets: V1, . . . ,V8 are the eight hyperplanes ±x1±x2±x3−1 =

0, and V9,V10,V11 are the three lines in direction of the every coordinate

axis. The varieties V1, . . . ,V8 form a hyperplane arrangement A′. The

variety V9 is the axis x1 and thus is the intersection of the hyperplanes

x2 = 0 and x3 = 0, i.e I(V9) = 〈x2, x3〉. Similarly I(V10) = 〈x1, x3〉 and

I(V11) = 〈x1, x2〉. The design is V = A′ ∪ V9 ∪ V10 ∪ V11 and the design

ideal is I(V) = I(A′) ∩ I(V9) ∩ I(V10) ∩ I(V11). For the lexicographic

monomial ordering in which x3 ≺ x2 ≺ x1, the Gröbner basis of I(V)

has three polynomials whose leading terms have total degree ten and are

x9
1x2, x

9
1x3, x

8
1x2x3 and thus

L(V) =
{

1, x1, x
2
1, x

3
1, x

4
1, x

5
1, x

6
1, x

7
1

}

⊗
{

xi
2x

j
3 : (i, j) ∈ Z2

≥0

}

⋃

{

xj+9
1 : j ∈ Z≥0

}

⋃

{

x8
1x

j+1
2 : j ∈ Z≥0

}

⋃

{

x8
1x

j+1
3 : j ∈ Z≥0

}

⋃
{

x8
1

}

,

where ⊗ denotes the Kronecker product of sets. That is, the set of expo-

nents of monomials in L(V) comprises the union of eight shifted copies

of Z2
≥0, three shifted copies of Z≥0 and a finite set of monomials. This

finite union of disjoint sets is an example of the Stanley decomposition

of an L(V), see Stanley (1978) and Sturmfels & White (1991).

1.3 Subsampling from a variety: “fill-up”

Varieties give a taxonomy which informs experimentation. Indeed, sup-

pose that, for fixed V , we take a finite sample of design points D from

V , i.e. D ⊂ V . We have the following inclusion between the quotient

rings as real vector spaces

R[x1, . . . , xk]/〈LT (I(D))〉 ⊂ R[x1, . . . , xk]/〈LT (I(V))〉. (1.4)
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That is, the basis for the quotient ring R[x1, . . . , xk]/I(V) provides an

indication of the capability of models we can fit over D by setting the

design D to lie on the affine variety V . In particular, the sets of standard

monomials for interpolating over D and over V satisfy L≺(D) ⊂ L≺(V).

A question of interest is: given any finite subset L′ ⊂ L≺(V), can we

find a set of points D ⊂ V so that L′ ⊆ L≺(D)?

An interesting case is the circle. Can we “achieve” a given L′ from

some finite design of points on the circle? The authors are able, in

fact, to answer affirmatively with a sufficiently large equally spaced de-

sign around the circle, and a little help from discrete Fourier analysis.

For instance set LT(x2
1 + x2

2 − 1) = x2
2 and thus L = {1, x2} ⊗ {xj

1 :

j ∈ Z≥0} and let L′ ⊂ L be the finite sub-basis. For i = 0, . . . , n − 1

let (xi, yi) =
(

cos
(

2πi
n

)

, sin
(

2πi
n

))

. For n sufficiently large, the design

matrix X = [xu
i yv

i ](u,v)∈L′,i=0,...,n−1 has full rank |L′|. Indeed we can

explicitly compute the non zero determinant of XT X using Fourier for-

mulæ.

The general case is stated as a conjecture.

Conjecture 3 Let V be a design variety with set of standard monomials

L≺(V). Then, for any model with finite support on L′ ⊂ L≺(V), there

is a finite design with points on the real part of V such that the model is

identifiable.

This conjecture can be proven when the design V is in the class of

generalised linear designs (GLD) of Section 1.2.3. We believe that the

construction may be of some use in the important inverse problem: find-

ing a design which allows identification of a given model.

Proof Let V =
⋃n

i=1 Vi be a GLD, where the irreducible components

are the Vi =
⋂ni

j=1 H(ai
j , c

i
j). Take a finite set of monomials L′ ⊂ L(V)

and consider a polynomial in this basis:

p(x) =
∑

α∈L′

θαxα,

i.e. p(x) is a polynomial with monomials in L′ and real coefficients.

Select a Vi and consider the values of p(x) on this variety. Suppose

dim(Vi) = ki, then by a linear coordinatisation of the variety we can

reduce the design problem on the variety to the identification of a model

of a particular order on Rki . But using the “design of points” theory

and because L′ is finite, with a sufficiently large design Di ⊂ Vi we

can carry out this identification and therefore can completely determine
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the value of p(x) on the variety Vi. Carrying out such a construction

for each variety gives the design D =
⋃n

i=1 Di. Then the values of p(x)

are then completely known on each variety and the normal form over

V recaptures p(x), which completes the proof. A shorthand version is:

fix a polynomial model on each Vi and the normal form (remainder) is

fixed. The normal form of p(x) with respect to I(D) must agree with

the normal forms of p(x) with respect to I(Di), for all i, otherwise a

contradiction can be shown. This is enough to shown that p(x) can be

reconstructed on V from D.

This points to a sequential algorithms in which we “fix” the values on

V1, reduce the dimension of the model as a result, fix the reduced model

on V2 and so on. Further research is needed to turn such algorithms

into a characterization of designs satisfying Conjecture 3 and minimal

sample size for the existence of such designs. The following example

shows heuristically how such an algorithm might work.

Example 8 Take k = 2 and the design V to be the GLD of four lines

x1 = ±1, x2 = ±1. A Gröbner basis for I(V) is
{

(x2
1 − 1)(x2

2 − 1)
}

with

leading term x2
1x

2
2 and

L(V) = {x2
2, x1x

2
2} ⊗ {xj

2 : j ∈ Z≥0}
⋃{x2

1, x
2
1x2} ⊗ {xj

1 : j ∈ Z≥0}
⋃{1, x1, x2, x1x2}

Take the model with all terms of degree three or less, which has ten

terms, see the dashed triangle on the right hand in Figure 1.1. On

x1 = 1 the model is cubic in x2 so that four distinct points are enough

to fix it. Thus any design with four distinct points on each line is enough.

The design D = {(±1,±1), (±1,±2), (±2,±1)} in Figure 1.1 satisfies our

needs.

1.4 Interpolation over varieties

Let V = ∪n
i=1Vi with Vi irreducible real affine variety and assume that

the Vi’s do not intersect i.e. Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ n. Then the

polynomial ideal driving an interpolation on V can be constructed as the

intersection of the n polynomial ideals, each one driving interpolation

on a separate Vi. We discuss this approach with an example.

Let z1, . . . , z4 be real values observed at design points (±1,±1) ∈ R2.

Suppose we are able to observe a function over the variety defined by a

circle with radius
√

3 and center at the origin and for simplicity, suppose
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bc bc

×

α1

α2

Fig. 1.1. GLDs V and D of Example 8 (left) and exponents α = (α1, α2) for
monomials in L(V) (right). The symbol × corresponds to the leading term
x2

1x
2

2, while the shaded area contains monomials not in L(V).

that we observe the zero function on the circle. We want a polynomial

function that interpolates both the values zi over the factorial points and

takes the value zero over the circle. Note that the design V is the union of

five varieties: one for each point, plus the circle. Start by constructing an

ideal Ii ⊂ R[x1, x2, y] for every point di, e.g. I1 = 〈y−z1, x1−1, x2−1〉.
A similar approach for the circle gives: IC = 〈y, x2

1 + x2
2 − 3〉. Then

intersect all the ideals I∗ = I1 ∩ · · · ∩ I4 ∩ IC . The ideal I∗ contains all

the restrictions imposed by all the varieties as well as the restrictions

imposed by the observed functions. Then, for a monomial order xα ≺ yβ ,

the desired interpolator is NF(y, I∗) ∈ R[x1, . . . , xk]. In our current

example we have NF(y, I∗) = g(x1, x2)(x
2
1 + x2

2 − 3)/4, where

g(x1, x2) = −(z1 + z2 + z3 + z4) + (z2 + z4 − z1 − z3)x1

+(z3 + z4 − z1 − z2)x2 + (z2 + z3 − z1 − z4)x1x2

is the interpolator for the four points, adjusted with a negative sign to

compensate for the inclusion of x2
1 +x2

2−3. This is the standard formula

appearing in books of design of experiments.

The monomial ordering used above is called a blocked ordering; for

an application of such type of orders in algebraic statistics see Pistone

et al. (2000). This method works well in a number of cases for which the

varieties do not intersect, and when the functions defined on each vari-

ety are polynomial functions. If the varieties that compose the design

intersect, then the methodology needs to ensure compatibility between

the observed functions at the intersections. For example, consider again

observing the zero function over the circle with radius
√

3; and the func-
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tion f(x1, x2) = 1 over the line x1 + x2 − 1 = 0. The observed functions

are not compatible at the two intersection points between the circle and

the line, which is reflected on the fact that NF(y, I∗) = y /∈ R[x1, x2].

1.5 Becker-Weispfenning interpolation

Becker & Weispfenning (1991) define a technique for interpolation on

varieties. It develops a polynomial interpolator for a set of pre-specified

polynomial functions defined on a set of varieties in Rk.

For a design variety V =
⋃n

i=1 Vi with Vi irreducible, the ideal of

Vi is generated in parametric form and a pre-specified polynomial func-

tion is determined for each variety. For every variety Vi, let gi1, . . . , gik ∈
R[z1, . . . , zm] be the set of parametric generators for the ideal of the vari-

ety I(Vi) so that I(Vi) = 〈x1−gi1, . . . , xk−gik〉 ⊂ R[x1, . . . , xk, z1, . . . , zm].

Also, for every variety Vi, a polynomial function fi(z) ∈ R[z1, . . . , zm]

is pre-specified. Now for indeterminates w1, . . . , wn, let I∗ be the ideal

generated by the set of polynomials

n
⋃

i=1

{wi (x1 − gi1) , . . . , wi (xk − gik)}
⋃

{

n
∑

i=1

wi − 1

}

(1.5)

We have I∗ ⊂ R[x1, . . . , xk, w1, . . . , wn, z1, . . . , zm]. The technique of in-

troducing dummy variables wi is familiar from the specification of point

ideals: when any wi 6= 0 we must have xj − gij = 0 for j = 1, . . . , k,

that is, we automatically select the i-th variety ideal. The statement
∑n

i=1 wi − 1 = 0 prevents all the wi being zero at the same time. If sev-

eral wi are non-zero, the corresponding intersection of Vi is active. Con-

sistency of the parametrization is, as Becker and Weispfenning (1991)

point out, a necessary, but not sufficient, condition for the method to

work.

Let ≺ be a block monomial order for which xα ≺ wβzγ . Set

f∗ =
∑m

i=1 wifi(z) and let f ′ = NF(f∗, I∗). The interpolation prob-

lem has a solution if the normal form of f∗ depends only on x, that

is if f ′ ∈ R[x1, . . . , xk]. Although the solution does not always exist,

an advantage of the approach is the freedom to parametrise each va-

riety separately from a functional point of view, but using a common

parameter z.

Example 9 (Becker & Weispfenning 1991, Example 3.1) We consider

interpolation over V = V1∪V2∪V3 ⊂ R2 The first variety is the parabola

x2 = x2
1 + 1, defined through the parameter z by g11 = z, g12 = z2 + 1.
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The second and third varieties are the axes x1 and x2 and therefore

g21 = z, g22 = 0 and g31 = 0, g32 = z. The prescribed functions over the

varieties are f1 = z2, f2 = 1 and f3 = z + 1. The ideal I∗ is constructed

using the set in Equation (1.5) and we set f∗ = w1f1 + w2f2 + w3f3.

For a block lexicographic monomial order ≺ in which xα ≺ wβzγ , we

compute the normal form of f∗ with respect to I∗ and obtain f ′ = x2+1.

1.6 Reduction of power series by ideals

Let us revisit the basic theory. Here x = (x1, . . . , xk). A polynomial

f ∈ R[x] can be reduced by the ideal I(V) ⊂ R[x] to an equivalent

polynomial f ′ such that f = f ′ on the affine variety V . By Theorem 1,

the reduced expression is f ′ = NF(f,V) and clearly f − f ′ ∈ I(V).

Example 10 Consider the hyperplane arrangement V given by the lines

x1 = x2 and x1 = −x2. We have I(V) = 〈x2
1 − x2

2〉. Now for i = 1, 2, . . .,

consider the polynomial fi = (x1 + x2)
i. For a monomial ordering in

which x2 ≺ x1, we have that NF(fi,V) = 2i−1(x1 +x2)x
i−1
2 , for instance

NF((x1 + x2)
5,V) = 16(x1 + x2)x

4
2 = 16x1x

4
2 + 16x5

2.

A convergent series of the form

f(x) =

∞
∑

i=0

αix
αi ,

can be written on the variety V as

NF(f,V) =

∞
∑

i=0

αiNF(xαi ,V). (1.6)

See Apel et al. (1996) for a discussion of conditions for the validity of

Equation (1.6).

We may also take the normal form of convergent power series with

respect to the ideal of an affine variety in C. For example by substituting

x3 = 1 in the expansion for ex we obtain

NF(ex, 〈x3 − 1〉) = 1 +
1

3!
+

1

6!
+

1

9!
+ . . . + x

(

1 +
1

4!
+

1

7!
+

1

10!
+ . . .

)

+x2

(

1

2!
+

1

5!
+

1

8!
+ . . .

)

=
1

3
e +

2

3
e−

1

2 cos

(√
3

2

)



16Generalised design: Interpolation and statistical modeling over varieties

+ x

(

1

3
e − 1

3
e−

1

2 cos

(√
3

2

)

+
1

3
e

1

2 sin

(√
3

2

))

+ x2

(

1

3
e − 1

3
e−

1

2 cos

(√
3

2

)

− 1

3
e

1

2 sin

(√
3

2

))

The relation NF(ex, 〈x3−1〉) = ex holds at the roots d1, d2, d3 of x3−1 =

0, with d1 the only real root. Note that the above series is not the same

as the Taylor expansion at, say, 0.

Example 11 Consider the ideal I = 〈x3
1 + x3

2 − 3x1x2〉. The variety V
that corresponds to I is the Descartes’ folium. For a monomial ordering

in which x2 ≺ x1, the leading term of the ideal is x3
1. Now consider the

function f(x) = sin(x1 + x2), whose Taylor expansion is

f(x) = (x1 + x2) −
1

3!
(x1 + x2)

3 +
1

5!
(x1 + x2)

5 + . . . (1.7)

The coefficients for every term of Equation (1.7) which is divisible by

x3
1 is absorbed into the coefficient of some of the monomials in L(V).

For the second term in the summation we have the following remainder

NF

(

− (x1 + x2)
3

3!
,V
)

= −1

2

(

x2
1x2 + x1x

2
2 + x1x2

)

.

Note that different terms of the Taylor series may have normal forms

with common terms. For instance the normal form for the third term in

the summation is

NF

(

(x1 + x2)
5

5!
,V
)

=
3

40
x2

1x
3
2−

3

40
x5

2+
1

8
x2

1x
2
2+

1

4
x1x

3
2−

1

40
x4

2+
3

40
x1x

2
2.

The sum of the normal forms for first ten terms of Equation (1.7) is

f̃(x) = x2 + x1 −
1

2
x1x2 −

17

40
x1x

2
2 −

1

2
x2

1x2 −
1

40
x4

2 +
137

560
x1x

3
2

+
1

8
x2

1x
2
2 −

41

560
x5

2 −
167

4480
x1x

4
2 +

1

16
x2

1x
3
2 +

167

13440
x6

2

− 4843

492800
x1x

5
2 −

17

896
x2

1x
4
2 +

2201

492800
x7

2 +
197343

25625600
x1x

6
2

+
89

44800
x2

1x
5
2 −

65783

76876800
x8

2 −
4628269

5381376000
x1x

7
2 +

1999

5913600
x2

1x
6
2

+
118301

1793792000
x9

2 −
305525333

1463734272000
x1x

8
2 −

308387

1076275200
x2

1x
7
2 + . . .
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×
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Fig. 1.2. Variety for the ideal 〈x1x2(x
2

1 + x2

2 − 2)〉 (left) and exponents
α = (α1, α2) for monomials in L(V) (right). The symbol × in the right
diagram corresponds to the leading term x3

1x2, while the shaded area contains
monomials not in L(V).

The equality f̃(x) = sin(x1 + x2) is achieved over V by summing the

normal forms for all terms in Equation (1.7): f̃(x) interpolates sin(x1 +

x2) over V .

1.7 Discussion and further work

In this paper we consider the extension of the theory of interpolation over

points to interpolation over varieties with in mind applications to design

of experiments in statistics. We associate to the design variety a radical

ideal and the quotient ring induced by this variety ideal is a useful source

of terms which can be used to form the basis for a (regression) model.

In particular, knowledge of the quotient ring for the whole variety can

be a useful guide to models which can be identified with a set of points

selected from the variety.

If the design variety is not a GLD, the technique still can be ap-

plied. As an example consider the structure V consisting of a circle

with a cross, see Figure 1.2. For any monomial ordering, the poly-

nomial g = x1x2(x
2
1 + x2

2 − 2) = x3
1x2 + x1x

3
2 − 2x1x2 is a Gröbner

basis for I(V). Now, for a monomial order in which x2 ≺ x1, we have

LT≺(g) = x3
1x2 and L(D) = {x2, x1x2, x

2
1x2} ⊗ {xj

2 : j ∈ Z≥0}
⋃{x3+j

1 :

j ∈ Z≥0}
⋃{1, x1, x

2
1} see Figure 1.2. If we are interested in L′ =

{1, x1, x2, x
2
1, x1x2, x

2
2} then a good subset of V which estimates L′ is

D = {(±1,±1)} ∪ {(0,±
√

2), (±
√

2, 0)} ∪ {(0, 0)}. This is the classic

central composite design of response surface methodology.

We have not discussed the issue of statistical variation in interpolation,

that is, when observations come with error. In the case of selecting

points from V of Section 1.3, standard models can be used, but when an

observation is a whole function as in Sections 1.4 and 1.5, a full statistical
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theory awaits development. It is likely that such a theory would involve

random functions, that is stochastic processes on each variety Vi.

Finally, we note that elsewhere in this volume there is emphasis on

probability models defined on discrete sets. Typically the set may be

a product set which allows independence and conditional independence

statements. A simple approach but with deep consequences is to consider

not interpolation of data (y-values) in a variety, but log p where p is a

probability. It is a challenge, therefore, to consider log p models on

varieties, that is, distributions on varieties. One may count occurrences

rather than observe real continuous y-values. With counts we may be

able to reconstruct a distribution on the transect as in Example 1. Again

the issue would be to reconstruct the full distribution both on and off

the transect. This points to a theory of exponential families anchored

by prescribing the value in varieties. We trust that the development of

such a theory would be in the spirit of this volume and the very valuable

work of its dedicatee.
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Proceedings of the 1991 international symposium on Symbolic and

algebraic computation’, pp. 64–69.

Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. (1993),

Distance sampling, Chapman & Hall, London. Estimating abundance

of biological populations, With a foreword by G. A. F. Seber.

Cox, D., Little, J. & O’Shea, D. (1997), Ideals, Varieties, and Algo-

rithms, Springer-Verlag, New York. Second Edition.

Fontana, R., Pistone, G. & Rogantin, M. (1997), ‘Algebraic analysis and

generation of two level designs’, Statist. Appl. 9(1), 15–29.

Giglio, B., Wynn, H. & Riccomagno, E. (2001), Gröbner basis methods
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