355 research outputs found

    Calculation of the T-matrix: general considerations and application of the point-matching method

    Get PDF
    The T-matrix method is widely used for the calculation of scattering by particles of sizes on the order of the illuminating wavelength. Although the extended boundary condition method (EBCM) is the most commonly used technique for calculating the T-matrix, a variety of methods can be used. We consider some general principles of calculating T-matrices, and apply the point-matching method to calculate the T-matrix for particles devoid of symmetry. This method avoids the time-consuming surface integrals required by the EBCM.Comment: 10 pages. 2 figures, 1 tabl

    Calculation and optical measurement of laser trapping forces on non-spherical particles

    Get PDF
    Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the particle. Despite the apparent simplicity of a laser trap, with a single particle in a single beam, exact calculation of the optical forces and torques acting on particles is difficult. Calculations can be performed using approximate methods, but are only applicable within their ranges of validity, such as for particles much larger than, or much smaller than, the trapping wavelength, and for spherical isotropic particles. This leaves unfortunate gaps, since wavelength-scale particles are of great practical interest because they are readily and strongly trapped and are used to probe interesting microscopic and macroscopic phenomena, and non-spherical or anisotropic particles, biological, crystalline, or other, due to their frequent occurance in nature, and the possibility of rotating such objects or controlling or sensing their orientation. The systematic application of electromagnetic scattering theory can provide a general theory of laser trapping, and render results missing from existing theory. We present here calculations of force and torque on a trapped particle obtained from this theory and discuss the possible applications, including the optical measurement of the force and torque.Comment: 10 pages, 5 figure

    A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures

    Full text link
    Background Vertebroplasty has become a common treatment for painful osteoporotic vertebral fractures, but there is limited evidence to support its use. Methods We performed a multicenter, randomized, double-blind, placebo-controlled trial in which participants with one or two painful osteoporotic vertebral fractures that were of less than 12 months\u27 duration and unhealed, as confirmed by magnetic resonance imaging, were randomly assigned to undergo vertebroplasty or a sham procedure. Participants were stratified according to treatment center, sex, and duration of symptoms (&lt;6 weeks or 6 weeks). Outcomes were assessed at 1 week and at 1, 3, and 6 months. The primary outcome was overall pain (on a scale of 0 to 10, with 10 being the maximum imaginable pain) at 3 months. Results A total of 78 participants were enrolled, and 71 (35 of 38 in the vertebroplasty group and 36 of 40 in the placebo group) completed the 6-month follow-up (91%). Vertebroplasty did not result in a significant advantage in any measured outcome at any time point. There were significant reductions in overall pain in both study groups at each follow-up assessment. At 3 months, the mean (&plusmn;SD) reductions in the score for pain in the vertebroplasty and control groups were 2.6&plusmn;2.9 and 1.9&plusmn;3.3, respectively (adjusted between-group difference, 0.6; 95% confidence interval, &ndash;0.7 to 1.8). Similar improvements were seen in both groups with respect to pain at night and at rest, physical functioning, quality of life, and perceived improvement. Seven incident vertebral fractures (three in the vertebroplasty group and four in the placebo group) occurred during the 6-month follow-up period. Conclusions We found no beneficial effect of vertebroplasty as compared with a sham procedure in patients with painful osteoporotic vertebral fractures, at 1 week or at 1, 3, or 6 months after treatment. (Australian New Zealand Clinical Trials Registry number, ACTRN012605000079640.)<br /

    TEM characterization and high-resolution modelling of second-phase particles of V and Ti containing TWIP steel under uniaxial hot-tensile condition

    Get PDF
    Composition and crystallographic nature of precipitates in microalloyed advanced high-strength steels (AHSS) greatly influence their microstructure and mechanical behavior. Second-phase precipitation in a high-Mn twinning-induced plasticity (TWIP) steel single microalloyed with V and Ti under uniaxial hot-tensile condition is experimentally and theoretically studied using high-resolution this purpose, carbon extraction replica technique, image treatment, and computer simulation are used to determine the crystallographic features of particles and compared with experimental measurements. Results show particle morphologies depending on crystallographic orientation, namely, hexagonal-type for TWIP-V steel and rectangular-type for TWIP-Ti steel. Measurements on particle size range from 10 to 190 nm in both steels. HRTEM digital image processing allows correcting the obtained Fast Fourier Transform (FFT) diffraction patterns, where interplanar distance measurements indicate the presence of VC and TiC compounds. In the case of the modeled particles, it is possible to identify the NaCltype crystal structure, which are correctly relate with experimental morphologies. Finally, theoretical simulations based on the multislice approach of the dynamical theory of electron diffraction allow modeling HRTEM images. Thus, results indicate that current characterization and simulation procedure are helpful in recognizing crystallographic nature of precipitates formed in the studied TWIP steels.Peer ReviewedPostprint (author's final draft

    An Evaluation of the Fe-N Phase Diagram Considering Long-Range Order of N Atoms in γ'-Fe4N1-x and ε-Fe2N1-z

    Get PDF
    The chemical potential of nitrogen was described as a function of nitrogen content for the Fe-N phases α-Fe[N], γ'-Fe4N1-x, and ε-Fe2N1-z. For α-Fe[N], an ideal, random distribution of the nitrogen atoms over the octahedral interstices of the bcc iron lattice was assumed; for γ'-Fe4N1-x and ε-Fe2N1-z, the occurrence of a long-range ordered distribution of the nitrogen atoms over the octahedral interstices of the close packed iron sublattices (fcc and hcp, respectively) was taken into account. The theoretical expressions were fitted to nitrogen-absorption isotherm data for the three Fe-N phases. The α/α + γ', α + γ'/γ', γ'/γ' + ε, and γ' + ε/ε phase boundaries in the Fe-N phase diagram were calculated from combining the quantitative descriptions for the absorption isotherms with the known composition of NH3/H2 gas mixtures in equilibrium with coexisting α and γ' phases and in equilibrium with coexisting γ' and ε phases. Comparison of the present phase boundaries with experimental data and previously calculated phase boundaries showed a major improvement as compared to the previously calculated Fe-N phase diagrams, where long-range order for the nitrogen atoms in the γ' and ε phases was not accounted for

    Temperature dependent CO2 behavior in microporous 1-D channels of a metal-organic framework with multiple interaction sites

    Get PDF
    The MOF with the encapsulated CO2 molecule shows that the CO2 molecule is ligated to the unsaturated Cu(II) sites in the cage using its Lewis basic oxygen atom via an angular eta(1)-(O-A) coordination mode and also interacts with Lewis basic nitrogen atoms of the tetrazole ligands using its Lewis acidic carbon atom. Temperature dependent structure analyses indicate the simultaneous weakening of both interactions as temperature increases. Infrared spectroscopy of the MOF confirmed that the CO2 interaction with the framework is temperature dependent. The strength of the interaction is correlated to the separation of the two bending peaks of the bound CO2 rather than the frequency shift of the asymmetric stretching peak from that of free CO2. The encapsulated CO2 in the cage is weakly interacting with the framework at around ambient temperatures and can have proper orientation for wiggling out of the cage through the narrow portals so that the reversible uptake can take place. On the other hand, the CO2 in the cage is restrained at a specific orientation at 195 K since it interacts with the framework strong enough using the multiple interaction sites so that adsorption process is slightly restricted and desorption process is almost clogged.ope

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF
    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges

    Efficacy and safety of vertebroplasty for treatment of painful osteoporotic vertebral fractures: a randomised controlled trial [ACTRN012605000079640]

    Get PDF
    Background. Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years. Design. A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months. Discussion. The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice. Trial registration. Australian Clinical Trial Register # [ACTRN012605000079640]. © 2008 Buchbinder et al; licensee BioMed Central Ltd.Rachelle Buchbinder, Richard H Osborne, Peter R Ebeling, John D Wark, Peter Mitchell, Chris J Wriedt, Lainie Wengier, David Connell, Stephen E Graves, Margaret P Staples and Bridie Murph
    corecore