1,187 research outputs found

    Determining Parameters of Cool Giant Stars by Modeling Spectrophotometric and Interferometric Observations Using the SAtlas Program

    Full text link
    Context: Optical interferometry is a powerful tool for observing the intensity structure and angular diameter of stars. When combined with spectroscopy and/or spectrophotometry, interferometry provides a powerful constraint for model stellar atmospheres. Aims: The purpose of this work is to test the robustness of the spherically symmetric version of the Atlas stellar atmosphere program, SAtlas, using interferometric and spectrophotometric observations. Methods: Cubes (three dimensional grids) of model stellar atmospheres, with dimensions of luminosity, mass, and radius, are computed to fit observations for three evolved giant stars, \psi Phoenicis, \gamma Sagittae, and \alpha Ceti. The best-fit parameters are compared with previous results. Results: The best-fit angular diameters and values of \chi^2 are consistent with predictions using Phoenix and plane-parallel Atlas models. The predicted effective temperatures, using SAtlas, are about 100 to 200 K lower, and the predicted luminosities are also lower due to the differences in effective temperatures. Conclusions: It is shown that the SAtlas program is a robust tool for computing models of extended stellar atmospheres that are consistent with observations. The best-fit parameters are consistent with predictions using Phoenix models, and the fit to the interferometric data for \psi Phe differs slightly, although both agree within the uncertainty of the interferometric observations.Comment: 5 pages, 6 figures, Accepted for publication in A&A as a Research Not

    Fundamental properties and atmospheric structure of the red supergiant VY CMa based on VLTI/AMBER spectro-interferometry

    Full text link
    We investigate the atmospheric structure and fundamental properties of the red supergiant VY CMa. We obtained near-infrared spectro-interferometric observations of VY CMa with spectral resolutions of 35 and 1500 using the AMBER instrument at the VLTI. The visibility data indicate the presence of molecular layers of water vapor and CO in the extended atmosphere with an asymmetric morphology. The uniform disk diameter in the water band around 2.0 mu is increased by \sim20% compared to the near-continuum bandpass at 2.20-2.25 mu and in the CO band at 2.3-2.5 mu it is increased by up to \sim50%. The closure phases indicate relatively small deviations from point symmetry close to the photospheric layer, and stronger deviations in the extended H2O and CO layers. Making use of the high spatial and spectral resolution, a near-continuum bandpass can be isolated from contamination by molecular and dusty layers, and the Rosseland-mean photospheric angular diameter is estimated to 11.3 +/- 0.3 mas based on a PHOENIX atmosphere model. Together with recent high-precision estimates of the distance and spectro-photometry, this estimate corresponds to a radius of 1420 +/- 120 Rsun and an effective temperature of 3490 +/- 90 K. VY CMa exhibits asymmetric, possibly clumpy, atmospheric layers of H2O and CO, which are not co-spatial, within a larger elongated dusty envelope. Our revised fundamental parameters put VY CMa close to the Hayashi limit of recent evolutionary tracks of initial mass 25 Msun with rotation or 32 Msun without rotation, shortly before evolving blueward in the HR-diagram.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysics (A&A) as a Lette

    ALMA observations of the variable 12CO/13CO ratio around the asymptotic giant branch star R Sculptoris

    Full text link
    [abridged] The 12CO/13CO ratio is often used as a measure of the 12C/13C ratio in the circumstellar environment, carrying important information about the stellar nucleosynthesis. External processes can change the 12CO and 13CO abundances, and spatially resolved studies of the 12CO/13CO ratio are needed to quantify the effect of these processes on the globally determined values. Additionally, such studies provide important information on the conditions in the circumstellar environment. The detached-shell source R Scl, displaying CO emission from recent mass loss, in a binary-induced spiral structure as well as in a clumpy shell produced during a thermal pulse, provides a unique laboratory for studying the differences in CO isotope abundances throughout its recent evolution. We observed both the 12CO(J=3-2) and the 13CO(J=3-2) line using ALMA. We find significant variations in the 12CO/13CO intensity ratios and consequently in the abundance ratios. The average CO isotope abundance ratio is at least a factor three lower in the shell (~19) than that in the present-day (60). Additionally, variations in the ratio of more than an order of magnitude are found in the shell itself. We attribute these variations to the competition between selective dissociation and isotope fractionation in the shell, of which large parts cannot be warmer than ~35 K. However, we also find that the 12CO/13CO ratio in the present-day mass loss is significantly higher than the 12C/13C ratio determined in the stellar photosphere from molecular tracers (~19). The origin of this discrepancy is still unclear, but we speculate that it is due to an embedded source of UV-radiation that is primarily photo-dissociating 13CO. This radiation source could be the hitherto hidden companion. Alternatively, the UV-radiation could originate from an active chromosphere of R Scl itself....Comment: 6 pages, 5 figures, online data available at http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A+A/556/L

    Ellipsoidal primary of the RS CVn binary zeta And: Investigation using high-resolution spectroscopy and optical interferometry

    Full text link
    We have obtained high-resolution spectroscopy, optical interferometry, and long-term broad band photometry of the ellipsoidal primary of the RS CVn-type binary system zeta And. Based on the optical interferometry the apparent limb darkened diameter of zeta And is 2.55 +/- 0.09 mas using a uniform disk fit. The Hipparcos distance and the limb-darkened diameter obtained with a uniform disk fit give stellar radius of 15.9 +/- 0.8 Rsolar, and combined with bolometric luminosity, it implies an effective temperature of 4665 +/- 140 K. The temperature maps obtained from high resolution spectra using Doppler imaging show a strong belt of equatorial spots and hints of a cool polar cap. The equatorial spots show a concentration around the phase 0.75. This spot configuration is reminiscent of the one seen in the earlier published temperature maps of zeta And. Investigation of the Halpha line reveals both prominences and cool clouds in the chromosphere. Long-term photometry spanning 12 years shows hints of a spot activity cycle, which is also implied by the Doppler images, but the cycle length cannot be reliably determined from the current data.Comment: 9 pages, 9 figures, accepted for A&

    What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    Full text link
    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3-D convection models and the 1-D pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude, which supports a scenario of radiative acceleration on Doppler-shifted molecular lines.Comment: Accepted for publication in A&
    • …
    corecore