35 research outputs found
Spatial distribution of metallic heteroatoms in soot nanostructure mapped by aberration-corrected STEM-EELS
Soot from the thermochemical conversion of solid and liquid fuels can be infused with metallic heteroatoms originating from the fuel – these heteroatoms alter the nanostructure and the reactivity of the soot. Here, we investigate the spatial distribution of metallic heteroatoms in soot generated by biomass gasification, using aberration-corrected Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy (STEM-EELS). The technique allowed for the mapping of heteroatom distribution in soot at the nanoscale, and thereby for the direct correlation of heteroatom concentration with the graphitic nanostructure. Spherical soot particles were coated with a thin layer of silicon, possibly in the form of quartz that may be linked to minor distortions of the nanostructure of the graphitic shell of the particles. Further results on non-spherical soot and inorganic-carbon fused aggregates suggest that the chemistry of formation was affected by the presence of gaseous ash-forming elements, especially calcium, with carbon-oxygen functional groups forming as intermediates in the graphite-inorganic reaction; i.e., prior to the formation of the thermodynamically stable carbonate bonds. The analytical approach demonstrated here can potentially help select fuel additives or aid in the design of fuel blends that minimize the formation of similar, hybrid carbon nanoparticles in combustion or gasification systems
On the use of alternative fuels in rotary kiln burners - An experimental and modelling study of the effect on the radiative heat transfer conditions
Abstract In this work, the radiative heat transfer conditions in a 400 kWfuel test furnace were studied. The test furnace is a scaled pilot of a rotary kiln furnace used in iron ore pellet production. In particular, the study focuses on the choice of fuel and the subsequent effect on temperature and radiative conditions in the flame. Several co-firing flames of coal and biomass were investigated and also other fuels such as heavy fuel oil and natural gas. The test furnace was used in the experiments, and radiative intensity was measured with a narrow angle radiometer. Detailed radiation modelling was performed using spectral models for gas and particle properties. The results show that all co-firing flames give a shorter radiating flame length. Based on the radiation modelling, it was also shown that the particle radiation dominates the heat transfer from the flames. Due to the high pre-heating temperature of the combustion air (1100°C), the flame temperatures were generally very high. The flame temperature in the natural gas flame was likely around 2000°C while the coal flame temperatures were estimated to 1500-1600°C. The two coals tested, having almost identical fuel specifications, resulted in a substantial difference in the radiation intensity emitted by the flame. This emphasizes the need of direct radiation measurements to evaluate fuel changes in industrial processes that are highly dependent on the heat transfer conditions
Computational modeling and temperature measurements using emission spectroscopy on a non-transferred plasma torch
A non-transferred plasma torch is a device used to generate a steady thermal plasma jet. Plasma torches have the potential to replace fossil fuel burners used as heat sources in the process industry. Today, however, the available plasma torches are of small scale compared to the power used in the burners in the process industry. In order to understand the effects of large scales on the plasma flow dynamics, it is essential to understand the operation of the plasma torch under different operating conditions and for different geometries. In this study, the analysis of a non-transferred plasma torch has been carried out using both computational and experimental methods. Computationally, the magnetohydrodynamic (MHD) equations are solved using a single-fluid model on a 2D axisymmetric torch geometry. The experiments are performed using emission spectroscopy to measure the plasma jet temperature at the outlet. This paper explains the changes in the arc formation, temperature, and velocity for different working gases and power inputs. Furthermore, the possibilities and disadvantages of the MHD approach, considering a local thermal equilibrium, are discussed. It was found that in general, the computational temperature obtained is supported by the experimental and equilibrium data. The computational temperatures agree by within 10% with the experimental ones at the center of the plasma torch. The paper concludes by explaining the significant impact of input properties like working gas and power input on the output properties like velocity and temperature of plasma jet. Validerad;2023;Nivå 2;2023-02-08 (johcin)</p
Modelling of heat flow and electromagnetic phenomena in non transferred plasma torch
Over the decades, computational methods have been used to model and describe the flow andionization dynamics in plasma torches. However, the impact of the operational parameters such as gas flow rate, swirl number and input current density on flow is still inexplicit. In this study, the flow in a non-transferred plasma torch is modelled using COMSOL Multiphysics, and the influence of these parameters is studied. The analysis is carried out on an axisymmetric geometry with the conical-shaped cathode, nozzle-shaped anode, and Argon is used as the plasma gas. A thermal plasma (equilibrium discharges) is considered, i.e., the plasma is underpartial to complete local thermodynamic equilibrium in which the magnetohydrodynamic (MHD) equations are solved. This is treated in the Equilibrium Discharge Interface in COMSOL’s plasma module that has been used in the present study. The laminar flow analysisis performed for low-velocity cases and turbulent flow analysis for higher velocities. It was found that the velocity increase across the plasma arc due to ionization and gas expansion, couldbe observed only for sufficiently high plasma inflow velocities. The position of the plasma arcis determined for different operating conditions. It was further found that the velocity has anegligible effect on the length of the plasma arc, whereas the dependency of the arc length andattachment point on the anode wall, to the input current density and cathode tip temperature iswell explained. The paper concludes by presenting the variations in temperature and velocityof plasma arc due to swirling inflow.ISBN för värdpublikation: 979-10-96389-13-1</p
Comparison of High-Rank Coals With Respect to Slagging/Deposition Tendency at the Transfer-Chute of Iron-OrePpelletizing Grate-Kiln Plants: A Pilot-Scale Experimental Study Accompanied by Thermochemical Equilibrium Modeling and Viscosity Estimations
Iron-ore pelletizing plants use high-rank coals to supply the heat necessary to process ores. Ash material from coal, in combination with iron-ore dust originating from the disintegration of the pellets, can cause deposition/slagging which often leads to severe production losses and damage. Deposition/slagging is most prominent in the hot areas of the grate-kiln setup and is more severe at the inlet of the rotary-kiln, i.e., the transfer-chute. Following on from our previous work, high-rank bituminous coals with potential for use in the pelletizing process were combusted in a pilot-scale (0.4 MW) pulverized-coal fired experimental combustion furnace (ECF). The fly-ash particles and short-term deposits were characterized to shed light on the observed difference in slagging/deposition tendencies of the coals. Global thermodynamic equilibrium modeling, in combination with viscosity estimates, was used to interpret the experimental findings and investigate the effect of the coal-ash composition upon deposition/slagging. This approach was carried out with and without the presence of Fe2O3-rich pellet-dust under oxidizing conditions within the temperature range at the transfer-chute of iron-ore pelletizing rotary-kilns. Based on the findings, a Qualitative Slagging Indicator (QSI) was proposed that can help pre-screen new solid fuels for potential slagging issues. The proposed QSI highlights the following: (1) an inverse relationship between viscosity and slagging/deposition tendency of the coals was observed (2) as viscosity decreases (either with increasing temperature or due to the change in the coal-ash composition), stronger deposits will form that will complicate the mechanical removal of the deposited layer. It was therefore inferred that low viscosity molten phases facilitate deposition/slagging, which is exacerbated by the presence of fluxing agents (e.g., CaO, MgO, K2O, Na2O, and Fe2O3) in the deposits. The low viscosity coal-ash-induced molten phases are also more likely to interact with the Fe2O3-rich pellet-dust that results in further decreases in viscosity, thereby intensifying depositions. The results from this work complement the on-going research by our group to elucidate and alleviate ash-related problems in industrial grate kilns