2,986 research outputs found

    Commodity Markets, Price Limiters and Speculative Price Dynamics

    Get PDF
    We develop a behavioral commodity market model with consumers, producers and heterogeneous speculators to characterize the nature of commodity price fluctuations and to explore the efectiveness of price stabilization schemes. Within our model, nonlinear interactions between market participants can create either bull or bear markets, or irregular price fluctuations between bulland bear markets. Both the imposition of a bottoming price level (to support producers) or a topping price level (to protect consumers) can reduce market price volatility. However, simple policy rules, such as price limiters, may have unexpected consequences in a complex environment: a minimum price level decreases the average price while a maximum price limit increases the average price. In addition, price limiters influence the price dynamics in an intricate way and may cause volatility clustering.commodity markets; price stabilization; simple limiters; technical and fundamental anaysis; bifurcation analysis; chaos control

    Preventing extinction and outbreaks in chaotic populations

    Full text link
    Interactions in ecological communities are inherently nonlinear and can lead to complex population dynamics including irregular fluctuations induced by chaos. Chaotic population dynamics can exhibit violent oscillations with extremely small or large population abundances that might cause extinction and recurrent outbreaks, respectively. We present a simple method that can guide management efforts to prevent crashes, peaks, or any other undesirable state. At the same time, the irregularity of the dynamics can be preserved when chaos is desirable for the population. The control scheme is easy to implement because it relies on time series information only. The method is illustrated by two examples: control of crashes in the Ricker map and control of outbreaks in a stage-structured model of the flour beetle Tribolium. It turns out to be effective even with few available data and in the presence of noise, as is typical for ecological settings.Comment: 10 pages, 6 figure

    Total Value of Phosphorus Recovery

    Get PDF
    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies

    Metabolic Futile Cycles and Their Functions: A Systems Analysis of Energy and Control

    Full text link
    It has long been hypothesized that futile cycles in cellular metabolism are involved in the regulation of biochemical pathways. Following the work of Newsholme and Crabtree, we develop a quantitative theory for this idea based on open-system thermodynamics and metabolic control analysis. It is shown that the {\it stoichiometric sensitivity} of an intermediary metabolite concentration with respect to changes in steady-state flux is governed by the effective equilibrium constant of the intermediate formation, and the equilibrium can be regulated by a futile cycle. The direction of the shift in the effective equilibrium constant depends on the direction of operation of the futile cycle. High stoichiometric sensitivity corresponds to ultrasensitivity of an intermediate concentration to net flow through a pathway; low stoichiometric sensitivity corresponds to super-robustness of concentration with respect to changes in flux. Both cases potentially play important roles in metabolic regulation. Futile cycles actively shift the effective equilibrium by expending energy; the magnitude of changes in effective equilibria and sensitivities is a function of the amount of energy used by a futile cycle. This proposed mechanism for control by futile cycles works remarkably similarly to kinetic proofreading in biosynthesis. The sensitivity of the system is also intimately related to the rate of concentration fluctuations of intermediate metabolites. The possibly different roles of the two major mechanisms for cellular biochemical regulation, namely reversible chemical modifications via futile cycles and shifting equilibrium by macromolecular binding, are discussed.Comment: 11 pages, 5 figure

    Generalized Smoluchowski equation with correlation between clusters

    Full text link
    In this paper we compute new reaction rates of the Smoluchowski equation which takes into account correlations. The new rate K = KMF + KC is the sum of two terms. The first term is the known Smoluchowski rate with the mean-field approximation. The second takes into account a correlation between clusters. For this purpose we introduce the average path of a cluster. We relate the length of this path to the reaction rate of the Smoluchowski equation. We solve the implicit dependence between the average path and the density of clusters. We show that this correlation length is the same for all clusters. Our result depends strongly on the spatial dimension d. The mean-field term KMFi,j = (Di + Dj)(rj + ri)d-2, which vanishes for d = 1 and is valid up to logarithmic correction for d = 2, is the usual rate found with the Smoluchowski model without correlation (where ri is the radius and Di is the diffusion constant of the cluster). We compute a new rate: the correlation rate K_{i,j}^{C} (D_i+D_j)(r_j+r_i)^{d-1}M{\big(\frac{d-1}{d_f}}\big) is valid for d \leq 1(where M(\alpha) = \sum+\infty i=1i\alphaNi is the moment of the density of clusters and df is the fractal dimension of the cluster). The result is valid for a large class of diffusion processes and mass radius relations. This approach confirms some analytical solutions in d 1 found with other methods. We also show Monte Carlo simulations which illustrate some exact new solvable models

    Minimal Brownian Ratchet: An Exactly Solvable Model

    Get PDF
    We develop an exactly-solvable three-state discrete-time minimal Brownian ratchet (MBR), where the transition probabilities between states are asymmetric. By solving the master equations we obtain the steady-state probabilities. Generally the steady-state solution does not display detailed balance, giving rise to an induced directional motion in the MBR. For a reduced two-dimensional parameter space we find the null-curve on which the net current vanishes and detailed balance holds. A system on this curve is said to be balanced. On the null-curve, an additional source of external random noise is introduced to show that a directional motion can be induced under the zero overall driving force. We also indicate the off-balance behavior with biased random noise.Comment: 4 pages, 4 figures, RevTex source, General solution added. To be appeared in Phys. Rev. Let

    Langevin dynamics with dichotomous noise; direct simulation and applications

    Get PDF
    We consider the motion of a Brownian particle moving in a potential field and driven by dichotomous noise with exponential correlation. Traditionally, the analytic as well as the numerical treatments of the problem, in general, rely on Fokker-Planck description. We present a method for direct numerical simulation of dichotomous noise to solve the Langevin equation. The method is applied to calculate nonequilibrium fluctuation induced current in a symmetric periodic potential using asymmetric dichotomous noise and compared to Fokker-Planck-Master equation based algorithm for a range of parameter values. Our second application concerns the study of resonant activation over a fluctuating barrier.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen

    Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension

    Full text link
    We use mesoscopic non-equilibrium thermodynamics theory to describe RNA unfolding under tension. The theory introduces reaction coordinates, characterizing a continuum of states for each bond in the molecule. The unfolding considered is so slow that one can assume local equilibrium in the space of the reaction coordinates. In the quasi-stationary limit of high sequential barriers, our theory yields the master equation of a recently proposed sequential-step model. Non-linear switching kinetics is found between open and closed states. Our theory unifies the thermodynamic and kinetic descriptions and offers a systematic procedure to characterize the dynamics of the unfolding processComment: 13 pages, 3 figure
    corecore