1,066 research outputs found
Faxen relations in solids - a generalized approach to particle motion in elasticity and viscoelasticity
A movable inclusion in an elastic material oscillates as a rigid body with
six degrees of freedom. Displacement/rotation and force/moment tensors which
express the motion of the inclusion in terms of the displacement and force at
arbitrary exterior points are introduced. Using reciprocity arguments two
general identities are derived relating these tensors. Applications of the
identities to spherical particles provide several new results, including simple
expressions for the force and moment on the particle due to plane wave
excitation.Comment: 11 pages, 4 figure
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
Guiding neutral atoms around curves with lithographically patterned current-carrying wires
Laser-cooled neutral atoms from a low-velocity atomic source are guided via a
magnetic field generated between two parallel wires on a glass substrate. The
atoms bend around three curves, each with a 15-cm radius of curvature, while
traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is
achieved with a current density of 3*10^4 A/cm^2 in the
100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms
in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page
Energy spectra of cosmic-ray nuclei at high energies
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment Cosmic Ray Energetics
And Mass (CREAM). The instrument included different particle detectors to
provide redundant charge identification and measure the energy of CRs up to
several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg,
Si, and Fe are presented up to eV. The spectral shape looks
nearly the same for these primary elements and it can be fitted to an power law in energy. Moreover, a new measurement of the absolute
intensity of nitrogen in the 100-800 GeV/ energy range with smaller errors
than previous observations, clearly indicates a hardening of the spectrum at
high energy. The relative abundance of N/O at the top of the atmosphere is
measured to be (stat.)(sys.) at 800
GeV/, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical
Journa
Scenarios and models for exploring future trends of biodiversity and ecosystem services changes. Final report to the European Commission, DG Environment on Contract
Attractiveness of periodic orbits in parametrically forced systemswith time-increasing friction
We consider dissipative one-dimensional systems subject to a periodic force
and study numerically how a time-varying friction affects the dynamics. As a
model system, particularly suited for numerical analysis, we investigate the
driven cubic oscillator in the presence of friction. We find that, if the
damping coefficient increases in time up to a final constant value, then the
basins of attraction of the leading resonances are larger than they would have
been if the coefficient had been fixed at that value since the beginning. From
a quantitative point of view, the scenario depends both on the final value and
the growth rate of the damping coefficient. The relevance of the results for
the spin-orbit model are discussed in some detail.Comment: 30 pages, 6 figure
The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry
The closest tensors of higher symmetry classes are derived in explicit form
for a given elasticity tensor of arbitrary symmetry. The mathematical problem
is to minimize the elastic length or distance between the given tensor and the
closest elasticity tensor of the specified symmetry. Solutions are presented
for three distance functions, with particular attention to the Riemannian and
log-Euclidean distances. These yield solutions that are invariant under
inversion, i.e., the same whether elastic stiffness or compliance are
considered. The Frobenius distance function, which corresponds to common
notions of Euclidean length, is not invariant although it is simple to apply
using projection operators. A complete description of the Euclidean projection
method is presented. The three metrics are considered at a level of detail far
greater than heretofore, as we develop the general framework to best fit a
given set of moduli onto higher elastic symmetries. The procedures for finding
the closest elasticity tensor are illustrated by application to a set of 21
moduli with no underlying symmetry.Comment: 48 pages, 1 figur
Elemental energy spectra of cosmic rays measured by CREAM-II
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment CREAM (Cosmic Ray
Energetics And Mass). The instrument (CREAM-II) was comprised of detectors
based on different techniques (Cherenkov light, specific ionization in
scintillators and silicon sensors) to provide a redundant charge identification
and a thin ionization calorimeter capable of measuring the energy of cosmic
rays up to several hundreds of TeV. The data analysis is described and the
individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14
eV. The spectral shape looks nearly the same for all the primary elements and
can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen
absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
Elastic interactions of active cells with soft materials
Anchorage-dependent cells collect information on the mechanical properties of
the environment through their contractile machineries and use this information
to position and orient themselves. Since the probing process is anisotropic,
cellular force patterns during active mechanosensing can be modelled as
anisotropic force contraction dipoles. Their build-up depends on the mechanical
properties of the environment, including elastic rigidity and prestrain. In a
finite sized sample, it also depends on sample geometry and boundary conditions
through image strain fields. We discuss the interactions of active cells with
an elastic environment and compare it to the case of physical force dipoles.
Despite marked differences, both cases can be described in the same theoretical
framework. We exactly solve the elastic equations for anisotropic force
contraction dipoles in different geometries (full space, halfspace and sphere)
and with different boundary conditions. These results are then used to predict
optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version,
accepted for publication in Phys. Rev.
Using statistical and artificial neural networks to predict the permeability of loosely packed granular materials
Well-known analytical equations for predicting permeability are generally reported to overestimate this important property of porous media. In this work, more robust models developed from statistical (multivariable regression) and Artificial Neural Network (ANN) methods utilised additional particle characteristics [‘fines ratio’ (x50/x10) and particle shape] that are not found in traditional analytical equations. Using data from experiments and literature, model performance analyses with average absolute error (AAE) showed error of ~40% for the analytical models (Kozeny–Carman and Happel–Brenner). This error reduces to 9% with ANN model. This work establishes superiority of the new models, using experiments and mathematical techniques
- …
