452 research outputs found

    Pairing correlations. Part 1: description of odd nuclei in mean-field theories

    Full text link
    In order to extract informations on pairing correlations in nuclei from experimental mass differences, the different contributions to odd-even mass differences are investigated within the Skyrme HFB method. In this first paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd-nuclei are also reported. PACS: 21.10Dr; 21.10.Hw; 21.30.-x. Keywords: Mean-field theories; Pairing correlations; odd nuclei;Comment: 34 pages, 8 figures. Submitted to Phys. Rev.

    A systematic study of Zr and Sn isotopes in the Relativistic Mean Field theory

    Full text link
    The ground-state properties of Zr and Sn isotopes are studied within the relativistic mean field theory. Zr and Sn isotopes have received tremendous attention due to various reasons, including the predicted giant halos in the neutron-rich Zr isotopes, the unique feature of being robustly spherical in the region of 100^{100}Sn \sim 132^{132}Sn and the particular interest of Sn isotopes to nuclear astrophysics. Furthermore, four (semi-) magic neutron numbers, 40, 50, 82 and 126, make these two isotopic chains particularly important to test the pairing correlations and the deformations in a microscopic model. In the present work, we carry out a systematic study of Zr and Sn isotopes from the proton drip line to the neutron drip line with deformation effects, pairing correlations and blocking effects for nuclei with odd number of neutrons properly treated. A constrained calculation with quadrupole deformations is performed to find the absolute minimum for each nucleus on the deformation surface. All ground-state properties, including the separation energies, the odd-even staggerings, the nuclear radii, the deformations and the single-particle spectra are analyzed and discussed in detail.Comment: the final version to appear in Modern Physics Letters A. more figures, discussions, and references added. the data remain unchange

    Enhanced binding and cold compression of nuclei due to admixture of antibaryons

    Get PDF
    We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean--field model assuming that the nucleon and antinucleon potentials are related by the G-parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.Comment: 10 pages, 3 figures, to be submitted to Phys. Lett.

    Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

    Get PDF
    We present results obtained in the calculation of nuclear ground state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order 1). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in Phys. Rev.

    Shell structure of superheavy nuclei in self-consistent mean-field models

    Get PDF
    We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models -- the Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a large number of parameterizations. Results obtained with the Folded-Yukawa potential are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. While all relativistic models give a reasonable description of spin-orbit splittings, all non-relativistic models show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%-80%. Spherical doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or (Z=126,N=184) depending on the parameterization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spin-orbit splitting in Pb208. The Z=120 and N=172 shell closures predicted by the relativistic models and some Skyrme interactions are found to be related to a central depression of the nuclear density distribution. This effect cannot appear in macroscopic-microscopic models which have a limited freedom for the density distribution only. In summary, our findings give a strong argument for (Z=120,N=172) to be the next spherical doubly-magic superheavy nucleus.Comment: 22 pages REVTeX, 16 eps figures, accepted for publication in Phys. Rev.

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Dexamethasone-induced cisplatin and gemcitabine resistance in lung carcinoma samples treated ex vivo

    Get PDF
    Chemotherapy for lung cancer not only has severe side effects but frequently also exhibits limited, if any clinical effectiveness. Dexamethasone (DEX) and similar glucocorticoids (GCs) such as prednisone are often used in the clinical setting, for example, as cotreatment to prevent nausea and other symptoms. Clinical trials evaluating the impact of GCs on tumour control and patient survival of lung carcinoma have never been performed. Therefore, we isolated cancer cells from resected lung tumour specimens and treated them with cisplatin in the presence or absence of DEX. Cell number of viable and dead cells was evaluated by trypan blue exclusion and viability was measured by the MTT-assay. We found that DEX induced resistance toward cisplatin in all of 10 examined tumour samples. Similar results were found using gemcitabine as cytotoxic drug. Survival of drug-treated lung carcinoma cells in the presence of DEX was longlasting as examined 2 and 3 weeks after cisplatin treatment of a lung carcinoma cell line. These data corroborate recent in vitro and in vivo xenograft findings and rise additional concerns about the widespread combined use of DEX with antineoplastic drugs in the clinical management of patients with lung cancer

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    Magic numbers for superheavy nuclei in relativistic continuum Hartree-Bogoliubov theory

    Full text link
    The magic proton and neutron numbers are searched in the superheavy region with proton number ZZ=100 - 140 and neutron number NN= (ZZ+30) - (2ZZ+32) by the relativistic continuum Hartree-Bogoliubov (RCHB) theory with interactions NL1, NL3, NLSH, TM1, TW99, DD-ME1, PK1, and PK1R. Based on the two-nucleon separation energies S2pS_{2p} and S2nS_{2n}, the two-nucleon gaps δ2p\delta_{2p} and δ2n\delta_{2n}, the shell correction energies EshellpE_{shell}^{p} and EshellnE_{shell}^{n}, the pairing energies EpairpE_{pair}^{p} and EpairnE_{pair}^{n}, and the pairing gaps Δp\Delta_{p} and Δn\Delta_{n}, ZZ=120, 132, and 138 and NN=172, 184, 198, 228, 238, and 258 are suggested to be the magic numbers within the present approach. The α\alpha-decay half-lives are also discussed. In addition, the potential energy surfaces of possible doubly magic nuclei are obtained by the deformation-constrained relativistic mean field (RMF) theory, and the shell effects stabilizing the nuclei are investigated. Furthermore, the formation cross sections of 172292^{292}_{172}120 and 184304^{304}_{184}120 at the optimal excitation energy are estimated by a phenomenological cold fusion reactions model with the structure information extracted from the constrained RMF calculation.Comment: 37 pages, 14 figure
    corecore