46 research outputs found

    SURFACE MODIFICATION OF SUGARCANE BAGASSE CELLULOSE AND ITS EFFECT ON MECHANICAL AND WATER ABSORPTION PROPERTIES OF SUGARCANE BAGASSE CELLULOSE/ HDPE COMPOSITES

    Get PDF
    Cellulose fibres from sugarcane bagasse were bleached and modified by zirconium oxychloride in order to improve the mechanical properties of composites with high density polyethylene (HDPE). The mechanical properties of the composites prepared from chemically modified cellulose fibres were found to increase compared to those of bleached fibres. Tensile strengths of the composites showed a decreasing trend with increasing filler content. However, the values for the chemically modified cellulose fibres/HDPE composites at all mixing ratios were found to be higher than that of neat HDPE. Results of water immersion tests showed that the water absorption affected the mechanical properties. The fracture surfaces of the composites were recorded using scanning electron microscopy (SEM). The SEM micrographs revealed that interfacial bonding between the modified filler and the matrix was significantly improved by the fibre modification

    Carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite: Fatigue behavior

    Get PDF
    AbstractFiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R=0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy

    HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators

    Get PDF
    WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistanc

    Influence of anodization on the fatigue strength of 7050-T7451 aluminium alloy

    No full text
    In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material.A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation

    Influence of shot peening and hard chromium electroplating on the fatigue strength of 7050-T7451 aluminum alloy

    No full text
    Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved

    Tensile strength of radio frequency cold plasma treated PET fibers - part I: influence of environment and treatment time

    No full text

    Evaluation of WC-10Ni thermal spraying coating by HVOF on the fatigue and corrosion AISI 4340 steel

    No full text
    Shot peening is a surface process widely used to improve the fatigue strength of materials, through compressive residual stresses induced in their surface layers. Considering mechanical components for high responsible applications, wear and corrosion control is currently accomplished by the use of coated materials.In the case of chrome plating or hard anodizing, lower fatigue strength in comparison to uncoated parts are associated to high residual tensile stresses and microcracks density. Under constant or variable amplitude loading microcracks will propagate and cross the interface coating substrate without impediment.The aim of the present study is to analyze the influence of WC-10Ni coating applied by HVOF process on the axial fatigue strength of AISI 4340 steel. The shot peening effect on the fatigue performance of coated AISI 4340 steel was also evaluated. The fractured fatigue specimens were investigated using a scanning electron microscope in order to obtain information about the crack initiation points. (C) 2010 Published by Elsevier Ltd

    Fatigue strength of HVOF sprayed Cr(3)C(2)-25NiCr and WC-10Ni on AISI 4340 steel

    No full text
    The fatigue strength of coated material is significantly influenced by internal residual stresses. Chromium coatings are used in applications to guarantee protection against wear and corrosion, combined with chemical resistance and good lubricity. The reduction in the fatigue strength of base material and since this technology presents detrimental environmental and health effects. resulted in the search on coatings viewed as being capable of replacing hard chrome plating.Thermally sprayed HVOF coatings are being considered to replace galvanic chromium deposits in industrial applications with, at least, comparable performance with respect to wear and corrosion resistance. The aim of the present study is to compare the influence of Cr(3)C(2)-25NiCr and WC-10Ni coatings applied by HVOF process and hard chromium electroplating on the fatigue strength, abrasive wear and corrosion resistance of AISI 4340 steel. S-N curves were obtained in axial fatigue tests for base material, chromium plated and HVOF coated specimens.Experimental data showed higher axial fatigue resistance for HVOF coated specimens in comparison to electroplated chromium. The wear weight loss tests indicated better results for the HVOF thermal spray processing in comparison to the chromium electroplating. An increase in the corrosion resistance of steel protected with WC-10Ni HVOF coatings occurred with increased coating thickness. For Cr(3)C(2)-25NiCr HVOF coating, results indicate clearly the higher salt spray resistance. (C) 2008 Published by Elsevier B.V.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore