61 research outputs found

    Atomic structure and vibrational properties of icosahedral B4_4C boron carbide

    Full text link
    The atomic structure of icosahedral B4_4C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions to the stiffness we show that, contrary to recent conjectures, intra-icosahedral bonds are harder.Comment: 9 pages including 3 figures, accepted in Physical Review Letter

    Disorder-induced phonon self-energy of semiconductors with binary isotopic composition

    Full text link
    Self-energy effects of Raman phonons in isotopically disordered semiconductors are deduced by perturbation theory and compared to experimental data. In contrast to the acoustic frequency region, higher-order terms contribute significantly to the self-energy at optical phonon frequencies. The asymmetric dependence of the self-energy of a binary isotope system m1xMxm_{1-x} M_x on the concentration of the heavier isotope mass x can be explained by taking into account second- and third-order perturbation terms. For elemental semiconductors, the maximum of the self-energy occurs at concentrations with 0.5<x<0.70.5<x<0.7, depending on the strength of the third-order term. Reasonable approximations are imposed that allow us to derive explicit expressions for the ratio of successive perturbation terms of the real and the imaginary part of the self-energy. This basic theoretical approach is compatible with Raman spectroscopic results on diamond and silicon, with calculations based on the coherent potential approximation, and with theoretical results obtained using {\it ab initio} electronic theory. The extension of the formalism to binary compounds, by taking into account the eigenvectors at the individual sublattices, is straightforward. In this manner, we interpret recent experimental results on the disorder-induced broadening of the TO (folded) modes of SiC with a 13C^{13}{\rm C}-enriched carbon sublattice. \cite{Rohmfeld00,Rohmfeld01}Comment: 29 pages, 9 figures, 2 tables, submitted to PR

    On Heavy-Quark Free Energies, Entropies, Polyakov Loop, and AdS/QCD

    Get PDF
    In this paper we explore some of the features of a heavy quark-antiquark pair at finite temperature using a five-dimensional framework nowadays known as AdS/QCD. We shall show that the resulting behavior is consistent with our qualitative expectations of thermal gauge theory. Some of the results are in good agreement with the lattice data that provides additional evidence for the validity of the proposed model.Comment: 15 pages, 10 figures; v2: comments added, misprints correcte

    Pressure-induced metallization in solid boron

    Get PDF
    Different phases of solid boron under high pressure are studied by first principles calculations. The α\alpha-B12_{12} structure is found to be stable up to 270 GPa. Its semiconductor band gap (1.72 eV) decreases continuously to zero around 160 GPa, where the material transforms to a weak metal. The metallicity, as measured by the density of states at the Fermi level, enhances as the pressure is further increased. The pressure-induced metallization can be attributed to the enhanced boron-boron interactions that cause bands overlap. These results are consist with the recently observed metallization and the associated superconductivity of bulk boron under high pressure (M.I.Eremets et al, Science{\bf 293}, 272(2001)).Comment: 14 pages, 5 figure

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Study of multi-carbide B4C-SiC/(Al, Si) reaction infiltrated composites by SEM with EBSD

    Get PDF
    In the definition of conceptual developments and design of new materials with singular or unique properties, characterisation takes a key role in clarifying the relationships of composition, properties and processing that define the new material. B4C has a rare combination of properties that makes it suitable for a wide range of applications in engineering: high refractoriness, thermal stability, high hardness and abrasion resistance coupled to low density. However, the low self-diffusion coefficient of B4C limits full densification by sintering. A way to overturn this constraint is by using an alloy, for example Al-Si, forming composites with B4C. Multi-carbide B4C-SiC/(Al, Si) composites were produced by the reactive melt infiltration technique at 1200 - 1350 degrees C with up to 1 hour of isothermal temperature holds. Pressed preforms made from C-containing B4C were spontaneously infiltrated with Al-Si alloys of composition varying from 25 to 50 wt% Si. The present study involves the characterisation of the microstructure and crystalline phases in the alloys and in the composites by X-ray diffraction and SEM/EDS with EBSD. Electron backscatter diffraction is used in detail to look for segregation and spatial distribution of Si and Al containing phases during solidification of the metallic infiltrate inside the channels of the ceramic matrix when the composite cools down to the eutectic temperature (577 degrees C). It complements elemental maps of the SEM/EDS. The production of a flat surface by polishing is intrinsically difficult and the problems inherent to the preparation of EBSD qualified finishing in polished samples of such type of composites are further discussed

    Gastric and intestinal barrier impairment in tropical enteropathy and HIV: limited impact of micronutrient supplementation during a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although micronutrient supplementation can reduce morbidity and mortality due to diarrhoea, nutritional influences on intestinal host defence are poorly understood. We tested the hypothesis that micronutrient supplementation can enhance barrier function of the gut.</p> <p>Methods</p> <p>We carried out two sub-studies nested within a randomised, double-blind placebo-controlled trial of daily micronutrient supplementation in an urban community in Lusaka, Zambia. In the first sub-study, gastric pH was measured in 203 participants. In the second sub-study, mucosal permeability, lipopolysaccharide (LPS) and anti-LPS antibodies, and serum soluble tumour necrosis factor receptor p55 (sTNFR55) concentrations were measured in 87 participants. Up to three stool samples were also analysed microbiologically for detection of asymptomatic intestinal infection. Gastric histology was subsequently analysed in a third subset (n = 37) to assist in interpretation of the pH data. Informed consent was obtained from all participants after a three-stage information and consent process.</p> <p>Results</p> <p>Hypochlorhydria (fasting gastric pH > 4.0) was present in 75 (37%) of participants. In multivariate analysis, HIV infection (OR 4.1; 95%CI 2.2-7.8; <it>P </it>< 0.001) was associated with hypochlorhydria, but taking anti-retroviral treatment (OR 0.16; 0.04-0.67; <it>P </it>= 0.01) and allocation to micronutrient supplementation (OR 0.53; 0.28-0.99; <it>P </it>< 0.05) were protective. Hypochlorhydria was associated with increased risk of salmonellosis. Mild (grade 1) gastric atrophy was found in 5 participants, irrespective of <it>Helicobacter pylori </it>or HIV status. Intestinal permeability, LPS concentrations in serum, anti-LPS IgG, and sTNFR55 concentrations did not differ significantly between micronutrient and placebo groups. Anti-LPS IgM was reduced in the micronutrient recipients (<it>P <</it>0.05).</p> <p>Conclusions</p> <p>We found evidence of a specific effect of HIV on gastric pH which was readily reversed by anti-retroviral therapy and not mediated by gastric atrophy. Micronutrients had a modest impact on gastric pH and one marker of bacterial translocation.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN31173864</p

    Advanced capabilities for materials modelling with Quantum ESPRESSO

    Get PDF
    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
    corecore