1,631 research outputs found
A scanning drift tube apparatus for spatio-temporal mapping of electron swarms
A "scanning" drift tube apparatus, capable of mapping of the spatio-temporal
evolution of electron swarms, developing between two plane electrodes under the
effect of a homogeneous electric field, is presented. The electron swarms are
initiated by photoelectron pulses and the temporal distributions of the
electron flux are recorded while the electrode gap length (at a fixed electric
field strength) is varied. Operation of the system is tested and verified with
argon gas, the measured data are used for the evaluation of the electron bulk
drift velocity. The experimental results for the space-time maps of the
electron swarms - presented here for the first time - also allow clear
observation of deviations from hydrodynamic transport. The swarm maps are also
reproduced by particle simulations
How stigma impacts on people with psychosis: The mediating effect of self-esteem and hopelessness on subjective recovery and psychotic experiences
This study aimed to examine how stigma impacts on symptomatic and subjective recovery from psychosis, both concurrently and longitudinally. We also aimed to investigate whether self-esteem and hopelessness mediated the observed associations between stigma and outcomes. 80 service-users with psychosis completed symptom (Positive and Negative Syndrome Scale) and subjective recovery measures (Process of Recovery Questionnaire) at baseline and 6-months later, and also completed the King Stigma Scale, the Self-Esteem Rating Scale and the Beck Hopelessness Scale at baseline. In cross sectional regression and multiple mediation analyses of the baseline data, we found that stigma predicted both symptomatic and subjective recovery, and the effects of stigma on these outcomes were mediated by hopelessness and self-esteem. When the follow-up data were examined, stigma at baseline continued to predict recovery judgements and symptoms. However, self-esteem only mediated the effect of stigma on PANSS passive social withdrawal. Self-esteem and hopelessness should be considered in interventions to reduce the effects of stigma. Interventions that address the current and long-term effects of stigma may positively affect outcome for people being treated for psychosis
On relaxation processes in collisionless mergers
We analyze N-body simulations of halo mergers to investigate the mechanisms
responsible for driving mixing in phase-space and the evolution to dynamical
equilibrium. We focus on mixing in energy and angular momentum and show that
mixing occurs in step-like fashion following pericenter passages of the halos.
This makes mixing during a merger unlike other well known mixing processes such
as phase mixing and chaotic mixing whose rates scale with local dynamical time.
We conclude that the mixing process that drives the system to equilibrium is
primarily a response to energy and angular momentum redistribution that occurs
due to impulsive tidal shocking and dynamical friction rather than a result of
chaotic mixing in a continuously changing potential. We also analyze the merger
remnants to determine the degree of mixing at various radii by monitoring
changes in radius, energy and angular momentum of particles. We confirm
previous findings that show that the majority of particles retain strong memory
of their original kinetic energies and angular momenta but do experience
changes in their potential energies owing to the tidal shocks they experience
during pericenter passages. Finally, we show that a significant fraction of
mass (~ 40%) in the merger remnant lies outside its formal virial radius and
that this matter is ejected roughly uniformly from all radii outside the inner
regions. This highlights the fact that mass, in its standard virial definition,
is not additive in mergers. We discuss the implications of these results for
our understanding of relaxation in collisionless dynamical systems.Comment: Version accepted for Publication in Astrophysical Journal, March 20,
2007, v685. Minor changes, latex, 14 figure
Recommended from our members
Electronic Aroma Detection Technology for Forensic and Law Enforcement Applications
A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic `fingerprint` pattern representative of the vapor- phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The results to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use
The Essential Role of ClpXP in Caulobacter crescentus Requires Species Constrained Substrate Specificity
The ClpXP protease is a highly conserved AAA+ degradation machine that is present throughout bacteria and in eukaryotic organelles. ClpXP is essential in some bacteria, such as Caulobacter crescentus, but dispensible in others, such as Escherichia coli. In Caulobacter, ClpXP normally degrades the SocB toxin and increased levels of SocB result in cell death. ClpX can be deleted in cells lacking this toxin, but these ΔclpX strains are still profoundly deficient in morphology and growth supporting the existence of additional important functions for ClpXP. In this work, we characterize aspects of ClpX crucial for its cellular function. Specifically, we show that although the E. coli ClpX functions with the Caulobacter ClpP in vitro, this variant cannot complement wildtype activity in vivo. Chimeric studies suggest that the N-terminal domain of ClpX plays a crucial, species-specific role in maintaining normal growth. We find that one defect of Caulobacter lacking the proper species of ClpX is the failure to properly proteolytically process the replication clamp loader subunit DnaX. Consistent with this, growth of ΔclpX cells is improved upon expression of a shortened form of DnaX in trans. This work reveals that a broadly conserved protease can acquire highly specific functions in different species and further reinforces the critical nature of the N-domain of ClpX in substrate choice
On Passion and Sports Fans:A Look at Football
The purpose of the present research was to test the applicability of the Dualistic Model of Passion (Vallerand et al., 2003) to being a sport (football) fan. The model posits that passion is a strong inclination toward an activity that individuals like (or even love), that they value, and in which they invest time and energy. Furthermore, two types of passion are proposed: harmonious and obsessive passion. While obsessive passion entails an uncontrollable urge to engage in the passionate activity, harmonious passion entails a sense of volition while engaging in the activity. Finally, the model posits that harmonious passion leads to more adaptive outcomes than obsessive passion. Three studies provided support for this dualistic conceptualization of passion. Study 1 showed that harmonious passion was positively associated with adaptive behaviours (e.g., celebrate the team’s victory), while obsessive passion was rather positively associated with maladaptive behaviours (e.g., to risk losing one’s employment to go to the team’s game). Study 2 used a short Passion Scale and showed that harmonious passion was positively related to the positive affective life of fans during the 2006 FIFA World Cup, psychological health (self-esteem and life satisfaction), and public displays of adaptive behaviours (e.g., celebrating one’s team victory in the streets), while obsessive passion was predictive of maladaptive affective life (e.g., hating opposing team’s fans) and behaviours (e.g., mocking the opposing team’s fans). Finally, Study 3 examined the role of obsessive passion as a predictor of partner’s conflict that in turn undermined partner’s relationship satisfaction. Overall, the present results provided support for the Dualistic Model of Passion. The conceptual and applied implications of the findings are discussed
Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat
Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children
Electron Transfer from Cyt b559 and Tyrosine-D to the S2 and S3 states of the water oxidizing complex in Photosystem II at Cryogenic Temperatures
The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state
- …