4,596 research outputs found

    Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

    Get PDF
    Agriculture and the monsoon are inextricably linked in India. A large part of the steady rise in agricultural production since the onset of the Green Revolution in the 1960’s has been attributed to irrigation. Irrigation is used to supplement and buffer crops against precipitation shocks, but water availability for such use is itself sensitive to the erratic, seasonal and spatially heterogeneous nature of the monsoon. Most attention in the literature is given to crop yields (Guiteras, 2009; Fishman, 2012; Auffhammer et al, 2011) and their ability to withstand precipitation shocks, in the presence of irrigation (Fishman, 2012). However, there remains limited evidence about how natural weather variability and realized irrigation outcomes are related. We provide new evidence on the relationship between monsoon changes, irrigation variability and water availability by linking a process based hydrology model with an econometric model for one of the world’s most water stressed countries. India uses more groundwater for irrigation than any other country, and there is substantial evidence that this has led to depletion of groundwater aquifers. First, we build an econometric model of historical irrigation decisions using detailed crop-wise agriculture and weather data spanning 35 years from 1970-2004 for 311 districts across 19 major agricultural states in India. The source of agricultural data comes from the Village Dynamics in South Asia database at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT). Weather data is sourced from the only long term continental scale daily observationally gridded precipitation and temperature dataset called APHRODITE (Asian Precipitation- Highly Resolved Observational Data Integration Towards Evaluation of the Water Resources), that captures the spatial extent of the monsoon across the Himalayas, South and South-East Asia, and the Middle East in great detail. We use panel data approaches to control for unobserved and omitted variables that can confound the true impacts of weather variability on irrigation. Exploiting the exogenous inter-annual variability in the monsoon, our multivariate regression models reveal that for crops grown in the wet season, irrigation is sensitive to distribution and total monsoon rainfall but not to ground or surface water availability. For crops grown in the dry season, total monsoon rainfall matters most, and its effect is sensitive to groundwater availability but differentially so for shallow dug wells and deep tube wells. The historical estimates from the econometric model are used to calculate future irrigated areas using three different bias-corrected climate model projections of monsoon climate for the years 2010 – 2050 under the strongest warming scenario ( business as usual scenario) RCP-8.5 from the CMIP5 (Coupled Model Intercomparison Project) models. These projections are then used as input to a physical hydrology model, such as the Water Balance Model, that tracks water use and exchange between the ground, atmosphere, runoff and stream networks. This enables us to quantify supply of water required to meet irrigation needs from sustainable sources such as rechargeable shallow groundwater, rivers and reservoirs, as well as unsustainable sources such as non- rechargeable groundwater. Preliminary results show that the significant variation in monsoon projections lead to very different results. Crops grown in the dry season show particularly divergent trends between model projections, leading to very different groundwater resource requirements. By combining the strengths of the economic and hydrology components, this work highlights potential sustainable or unsustainable water use trajectories that different regions within India will face

    Associations between the measures of physical function, risk of falls and the quality of life in haemodialysis patients : a cross-sectional study

    Get PDF
    Background Impaired physical function due to muscle weakness and exercise intolerance reduces the ability to perform activities of daily living in patients with end-stage kidney disease, and by consequence, Health-Related Quality of Life (HRQoL). Furthermore, the risk of falls is an aggregate of physical function and, therefore, could be associated with HRQoL as well. The present study examined the associations between objective and subjective measures of physical function, risk of falls and HRQoL in haemodialysis patients. Methods This cross-sectional multicentre study included patients on maintenance haemodialysis. Physical function (quadriceps force, handgrip force, Sit-to-Stand, and six-minute walking test), the risk of falls (Tinetti, FICSIT-4, and dialysis fall index) and HRQoL (PROMIS-29 and EQ-5D-3 L) were measured and analysed descriptively, by general linear models and logistic regression. Results Of the 113 haemodialysis patients (mean age 67.5 +/- 16.1, 57.5% male) enrolled, a majority had impaired quadriceps force (86.7%) and six-minute walking test (92%), and an increased risk of falls (73.5%). Whereas muscle strength and exercise capacity were associated with global HRQoL (R-2 = 0.32) and the risk of falls, the risk of falls itself was related to psycho-social domains (R-2 = 0.11) such as depression and social participation, rather than to the physical domains of HRQoL. Objective measures of physical function were not associated with subjective fatigue, nor with subjective appreciation of health status. Conclusions More than muscle strength, lack of coordination and balance as witnessed by the risk of falls contribute to social isolation and HRQoL of haemodialysis patients. Mental fatigue was less common than expected, whereas, subjective and objective physical function were decreased

    Absent anterior cruciate ligament

    Get PDF
    This case report presents the MRI findings of aplasia of the anterior cruciate ligament with associated hypoplasia of the posterior cruciate ligament (Manner type 2). Radiographically the presence of a shallow femoral notch and hypoplastic tibial spines (the so-called "dromedar" sign) can aid in the diagnosis. Operative treatment is often not indicated since the congenital absence of the ACL implies long-standing altered biomechanics to which the knee has well adapted in the majority of cases

    Invisible water, visible impact: How unsustainable groundwater use challenges sustainability of Indian agriculture under climate change

    Get PDF
    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen
    • …
    corecore