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Abstract Nurse rostering represents an interesting timetabling problem which 
is well known to be challenging from an optimisation perspective. Academic 
nurse rostering, however, lacks a generally accepted model, and therefore lacks 
a generally accepted format for sharing data. This paper presents XESTT, a 
unified model for expressing nurse rostering instances and solutions, based 
on the XHSTT high school timetabling model. Instances and solutions from 
several repositories have been converted to XESTT. Its form makes it likely 
that future instances could be accommodated easily. The use of XHSTT gives 
access to some useful existing software, including a web server for evaluating 
solutions, and a free, open-source solver platform.
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1 Introduction

A long-standing obstacle to progress in research in automated timetable con-
struction has been the difficulty of sharing data, arising from the complexity of 
real-world instances of the problems. For many years, there was only one widely 
shared data set (the Toronto data set for university examination timetabling), 
and it omitted some real-world requirements, such as room requirements.
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The most successful attempt so far to overcome this obstacle is XHSTT
[16,17], an XML-based high school timetabling model created within the high
school timetabling research community. XHSTT has many advantages: it is
precisely specified; it can define real-world instances, and indeed it has been
used to define many real-world instances from around the world; and it has
a web server, HSEval [11], which evaluates solutions. A freely available solver
platform, KHE [12], performs many useful tasks, including reading and writing
instances and solutions, and evaluating solutions incrementally as they evolve
during solving. Owing in part to its use in the Third International Timetabling
Competition [18], the first competition to feature high school timetabling,
XHSTT has become widely accepted, to a point where it can be said to have
revolutionized high school timetabling research.

In nurse rostering, the current modelling situation is not as grim as it
was in high school timetabling before XHSTT. The nurse rostering research
community has produced several sets of real-world nurse rostering instances,
and organized two competitions. But neither is the situation as good as it now
is in high school timetabling. There is no widely accepted model, and no freely
available solver platform. For more background, consult the surveys [7,24].

This paper leverages the high school timetabling work to define an extended
version of XHSTT, called XESTT (ES stands for ‘Employee Scheduling’), to
model nurse rostering. Converters have been written from existing models to
XESTT, and many converted instances and solutions are available [13]. The
HSEval web server [11] and the KHE solver platform [12] have been extended
to accept these nurse rostering instances and solutions.

2 Nurse rostering and employee scheduling

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward. Hospitals operate 24 hours a day, so there are usually at least three
types of shifts: morning, afternoon, and night. Each shift demands a certain
number of nurses, often with specific skills. There may be some flexibility in
how many nures to assign, and the number typically changes from day to day.

Perhaps the most characteristic feature of the problem is the complex array
of requirements that each nurse’s timetable must satisfy. In addition to limits
on total workload, rules such as ‘a nurse must have a day off after a sequence
of night shifts’, ‘a nurse may work at most four days in a row’ and so on are
very common, and highly variable, both between and within instances.

A nurse rostering timetable can only hope to fix a schedule for a week,
or a few weeks, ahead. However, the rules just cited cannot be confined to
within one planning period. That could lead to cases, for example, where a
nurse works the last four days of one period and the first four days of the next,
which is acceptable separately but unacceptable as a whole. Accordingly, real-
world instances take account of history: what happened in preceding planning
periods. XESTT supports history, as explained briefly in Section 6.4, and more
fully in a companion paper [15].
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Table 1 XHSTT’s constraints, with informal definitions, grouped by what they apply to.

Event constraints
Split Events constraint Split event into limited number of sub-events
Distribute Split Events constraint Split event into sub-events of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order

Event resource constraints
Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set
Avoid Split Assignments constraint Assign same resource to several event resources

Resource constraints
Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times
Cluster Busy Times constraint Limit resource’s busy days
Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

Nurse rostering is a special case of the employee scheduling problem, which
assigns shifts or other duties to employees in workplaces generally. Although
the new format has been named in anticipation of these wider applications,
so far it has been used only for nurse rostering. A substantial effort, going
well beyond the scope of this paper, would be required to justify a claim that
XESTT is a suitable model for general employee scheduling.

3 A brief introduction to XHSTT

This section introduces XHSTT, the high school timetabling format that is
the starting point for our nurse rostering model.

An XHSTT instance contains four parts: the cycle, which is the chrono-
logical sequence of times that may be assigned to events; a set of resources,
which are entities that attend events; a set of events, which are meetings, each
of fixed duration (number of times), and containing any number of named
event resources, each specifying one resource that attends the event; and a set
of constraints, which specify conditions that solutions should satisfy, and the
penalty costs to impose when they don’t.

Sets of times, resources, and events may be defined, called time groups,
resource groups and event groups. Each resource has one resource type, usually
Teachers, Rooms, Students, or Classes, saying what type of resource it is.

XHSTT currently offers 16 constraint types (Table 1), specifying preferred
times for events, unavailable times for resources, and so on.

Whatever its type, each constraint has a non-negative integer weight. When
the constraint is violated, its amount of violation (a positive integer), called
the deviation, is multiplied by the weight to produce a cost. Alternatively, the
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deviation may be squared before multiplying by the weight. Each constraint
may be marked required, making it a required or hard constraint, whose cost
contributes to a total called the infeasibility value or hard cost. Otherwise it
is non-required or soft, and its cost contributes to another total called the
objective value or soft cost.

In many applications, including nurse rostering, a solution with non-zero
hard cost is considered to be infeasible, that is, useless. High school timetablers
have traditionally accepted a few violations of constraints they call hard (such
as teacher clashes), reasoning that a timetable with a few major problems is
better than no timetable at all. XHSTT leaves such interpretation to the user.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize pri-
marily hard cost and secondarily soft cost. It may also be required to split
events of long duration into smaller events. And it may be required to assign
resources to unpreassigned event resources: often rooms, occasionally teachers,
never (in practice) classes or students. A precise specification may be found
online [11]; further details are given as needed throughout this paper.

XHSTT also defines a solution format: just a list of assignments of times
to events (and durations for split events), and resources to event resources.

The main disadvantages of XHSTT are its verbosity, arising from the use
of XML, and its complexity, which can be daunting at first. However, the
designers of XHSTT took a conservative approach, adding features only as
required by actual instances, so the complexity is essentially unavoidable.

4 XESTT: extending XHSTT to support nurse rostering

This section describes XESTT, our extension of XHSTT for nurse rostering.
It also details three constraints that are important in nurse rostering: the limit
busy times, cluster busy times, and limit active intervals constraints.

Since our extensions do not have the sanction of the high school timetabling
research community, we first replace HighSchoolTimetableArchive, the XML
tag beginning each XHSTT file, by EmployeeScheduleArchive. Except for
this one change, every legal XHSTT file is also legal XESTT with the same
meaning. The KHE platform and the HSEval web site accept either tag, as
well as the XESTT extensions when the tag is EmployeeScheduleArchive.

A limit busy times constraint contains a resource, a time group, an integer
minimum limit, and an integer maximum limit. It is violated when less than
the minimum or more than the maximum number of times of the time group
are busy times for the resource (times when it attends events). The amount
by which the number of busy times falls short of the minimum or exceeds the
maximum is multiplied by the constraint’s weight to produce the cost.

Many nurse rostering constraints can be expressed as limit busy times
constraints. For example, to say that some nurse can take at most one shift on
some day, add a limit busy times constraint containing the nurse, a time group
containing the times of the day, and maximum limit 1. This assumes that each
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shift occupies one time, to be discussed in Section 5.1. The constraint is then
replicated for every nurse on every day. (One limit busy times constraint can
accept many time groups and entire resource groups, saving much file space.)

Here are some more examples. If a nurse works between 18 and 24 shifts,
the time group is the set of all times, with minimum limit 18 and maximum
limit 24. If the limit is on the number of night shifts, the time group is the set
of all night times. If the limit is on the number of shifts per week, there is one
constraint per week, whose time group is the times of that week. And so on.

The XHSTT specification states that a limit busy times constraint is not
violated when the number of busy times is 0, regardless of the limits. In nurse
rostering, this is not always wanted. Making it optional is our first extension
to XHSTT. The phrase ‘or else 0’ is used in this paper to say that zero is
allowed even when the limits do not include it.

The XHSTT cluster busy times constraint is a kind of generalization of the
limit busy times constraint, in which each time is replaced by a time group.
It contains a resource, a set of time groups, an integer minimum limit, and an
integer maximum limit. It is violated when less than the minimum or more
than the maximum number of its time groups are busy for the resource. A
time group is busy for a resource when it contains at least one busy time for
the resource. Costs are calculated as for limit busy times constraints.

For example, to limit a nurse to working on at most two weekends, define,
for each weekend, one time group holding that weekend’s times, and add a
cluster busy times constraint with those time groups and maximum limit 2.

The XHSTT specification states that the case of zero busy time groups is
not special: it is a violation if zero falls outside the limits. Again, for nurse
rostering, this needs to be optional, and this is our second extension.

To see the need for our third extension, consider requiring a nurse’s days off
to occur in blocks of at least two days. This amounts to prohibiting the pattern
‘busy day, then day off, then busy day’. Take three specific days, Monday,
Tuesday, and Wednesday. Clearly, we need a constraint involving three time
groups, for the times of Monday, Tuesday, and Wednesday. But it is not clear
whether the constraint can be expressed using minimum and maximum limits
on the number of busy days, because what counts about Tuesday is whether
it is not busy, not whether it is busy.

Some patterns, such as the one just given, cannot be expressed in XHSTT,
or can only be expressed in an artificial way (Section 5.3). Artificiality is a
problem for solvers: it acts as a barrier to analysing a violation and finding
ways to remove it. Accordingly, we introduce another extension to the cluster
busy times constraint which allows these cases to be modelled naturally.

Instead of calling a time group busy, we call it active, and apply the min-
imum and maximum limits to the number of active time groups. Each time
group has a polarity: some are positive, which means that they are considered
to be active when they are busy, while others (and this is the extension) are
negative: they are considered to be active when they are not busy.

The solution to the example above is now straightforward: positive Monday
and Wednesday time groups, a negative Tuesday time group, and maximum
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limit 2. If a maximum is exceeded, an analytical solver would aim to reduce
the number of active time groups, by making positive time groups non-busy
and negative time groups busy. Minimum limits need the opposite treatment.

The limit active intervals constraint (which is new to XESTT) has the
same attributes as the cluster busy times constraint, notably maximum and
minimum limits and a sequence of time groups with polarities. The meaning
is the same except that the limits apply to the lengths of subsequences of
consecutive active time groups, rather than to the total number of active time
groups. This is used to impose limits on the number of consecutive busy or
free days (or weekends etc.). This could be done using multiple cluster busy
times constraints in a way familiar from integer programming formulations of
nurse rostering, but the limit active intervals constraint is much more natural
and concise, especially when expressing minimum limits.

There are several other extensions which we just mention here (see [11] for
precise definitions). One allows a constraint to be repeated at intervals along
the cycle (typically daily or weekly). Another allows a constraint’s limits to be
adjusted for each resource, to take account of history: what the resource did
before the instance began [15,23]. The limit workload constraint may limit a
resource’s workload (measured in minutes, for example) over a subset of the
cycle, not just over the whole cycle as in XHSTT. And there is a second new
constraint, the limit resources constraint, described in Section 5.2.

5 Defining nurse rostering instances in XESTT

This section shows how nurse rostering instances may be defined in XESTT.
It is not intended to be exhaustive; rather, it presents ideas common to many
conversions. Issues raised by particular conversions are described in Section 6.

5.1 Times, resources, and events

This section gives the overall structure of nurse rostering instances, including
times, resources, and events—everything, in fact, except constraints.

In high school timetabling, only the first week or fortnight is timetabled,
because after that the timetable repeats. Each day of that week or fortnight
typically contains between six and ten times, each representing one interval of
time. The intervals are indivisible, non-overlapping, and follow chronologically
after each other. The full sequence of times, over all days, is called the cycle.

A nurse rostering timetable does not repeat; nevertheless, we still refer to
the full sequence of its times as the cycle. It consists of a sequence of days,
possibly extending over several weeks. So far the two models are compatible,
but when we consider the times of one day, they diverge. In nurse rostering the
individual, indivisible pieces of work, called shifts, can occupy 8 hours or more
of the day, and can overlap in time. For example, the morning shift might run
from 8am to 5pm, along with an early shift running from 7am to 4pm.
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One way to handle this, the way which follows the high school model most
closely, is to divide the day into times by taking all the start times and end
times of shifts, sorting them into chronological order, and defining one time
for each non-empty interval between two start or end times. For the early
and morning shifts just given, this would produce three times, representing
the time intervals 7am-8am, 8am-4pm, and 4pm-5pm. The early shift would
occupy the first two times, and the morning shift would occupy the last two.

While this can be done, it leads to accounting problems. Typically, nurse
rostering constraints speak of numbers of shifts, while XHSTT constraints
speak of numbers of times. It is much easier if each shift occupies one time.

Accordingly, a different model is used, in which each shift is mapped to
its own time of day. In XESTT, the names given to times may be arbitrary.
We use a simple convention for time names: each consists of a week number,
then a short day name, then a number representing a shift (1 for early, 2 for
morning, and so on). For example, the early shift on the Monday of the first
week occurs at time 1Mon1, the morning shift that day occurs at time 1Mon2,
and so on. All shifts have duration 1. Because of overlapping there is in reality
no chronological order for the times of one day.

Incidentally, there are two concepts here: the shift type, which is a kind of
shift such as ‘the morning shift’ or ‘the night shift’, and the shift, which is one
piece of work, a shift type on a particular day. Our software separates these
concepts, but here we follow common convention and use shift for both.

This model does not say that times 1Mon1 and 1Mon2 overlap, but nurses
are easily prevented from taking shifts at both times, using a limit busy times
constraint for these two times with maximum limit 1. The usual case of a nurse
taking at most one shift per day is expressed by a limit busy times constraint
containing the times of the first day and maximum limit 1, repeated each day.

The limit busy times and cluster busy times constraints are only concerned
with whether a resource is busy at each time or not. If the resource has a
clash at some time, in XHSTT that still only counts as one busy time. So all
resources need avoid clashes constraints to forbid clashes at each time, even if
a constraint is present to forbid more than one shift per day.

Time groups are used to define useful sets of times: the weekend times, the
1Mon times, and so on. Any number of time groups may be defined, and a time
may lie in any number of time groups.

High school timetabling usually has several types of resources: teachers,
rooms, students, and so on. In nurse rostering, there are only nurses. So there
is just one resource type, Nurses, and one resource for each nurse.

Resource groups are used to model nurses’ skills. For example, a resource
group containing the senior nurses, and another containing all nurses, may be
needed. Any number of resource groups may be defined, and a resource may
lie in any number of resource groups.

An event represents one piece of work done together by some resources.
It contains a starting time, a duration (the number of consecutive times the
event is to run), an optional workload (measured in arbitrary units, for example
minutes), and any number of resources, which are required to attend the event
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for its full duration. The starting time and resources may be preassigned, or
left to the solver to assign; the duration and workload are fixed constants.

In our model of nurse rostering, the work is represented by one event of
duration 1 for each time, preassigned that time. For example, if 3 nurses are
required during time 1Mon1, the event for that time is defined by

Event E-1Mon1

Duration 1

StartingTime 1Mon1

3 Nurses

End Event

or rather, by some equivalent but verbose XML.
An event only specifies the type of each resource it requests (always Nurses

here). Constraints are used to request particular skills, as described below.
When all events have preassigned times and duration 1, as here, the seven

event constraints shown in Table 1 offer nothing useful and are not used.

5.2 Cover constraints

Cover constraints limit the number of nurses (or nurses with certain skills)
assigned to each shift. This section explains how they are expressed in XESTT.

Many cover constraints can be expressed as XESTT assign resource and
prefer resources constraints. For example, suppose 4 nurses are wanted at
time 1Tue3, but 3 or 5 are allowed, with a penalty. Then event E-1Tue3 would
request 5 nurses, with hard assign resource constraints for the first 3 requests
(defining a hard penalty that applies when any are left unassigned), a soft
assign resource constraint for the fourth, and a prefer resources constraint with
the empty set of preferred resources for the fifth. This last constraint assigns a
penalty when the resource request it applies to is assigned a resource outside
the set of preferred resources. If that set is empty, then every assignment
produces the penalty, and leaving the request unassigned avoids it.

Constraints on nurses’ skills map to ordinary prefer resources constraints.
For example, if one of the 4 nurses must be a senior nurse, a prefer resources
constraint with resource group SeniorNurses is applied to the first request.

Sometimes there is no definite upper limit to the number of nurses required
for a shift, merely a minimum and perhaps a preferred number. This can be
handled by placing sufficiently many event resources into each event. Strictly
speaking, this alters the instance by imposing an unbreakable upper limit on
the number of resources that may be assigned, but if that limit is generous
(say, twice the preferred number) the inexactness is not significant.

A cover constraint may apply to a particular interval of time during the
day. For example, it might require at least one nurse with a particular specialty
to be on duty during the interval. If several shifts are running then, such a
constraint cannot be converted into constraints on individual event resources.
So XESTT introduces the limit resources constraint, which places upper and
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lower limits on the number of resources, or on the number of resources from
a given resource group, that may be assigned to an arbitrary set of event
resources. This models these kinds of constraints directly.

5.3 Resource constraints

Resource constraints constrain resources’ timetables. They may be roughly
classified into counter constraints and sequence constraints.

Counter constraints limit the number of times that something may appear
in a nurse’s timetable. For example, a nurse might be required to work at least
18 and at most 24 shifts. These are easily implemented in XESTT, in simple
cases by limit busy times constraints (limits on the number of shifts, on the
number of shifts per week, and so on), and in other cases by cluster busy times
constraints (limits on the number of weekends worked, and so on).

Sequence constraints limit the number of times that something may appear
consecutively in a nurse’s timetable. For example, they might forbid three
busy weekends in a row, or a night shift just before a free weekend. They can
be implemented by sets of counter constraints, one for each point where the
sequence could begin. Consider forbidding a morning shift following a night
shift. To forbid the combination of night shift 1Mon3 with morning shift 1Tue1,
a limit busy times constraint is added for each nurse, with time group

{1Mon3, 2Tue1}
and maximum limit 1, and replicated for every night shift with a following
morning shift. This time window implementation of sequence constraints is
familiar from integer programming models of nurse rostering [19,20].

When the same time groups appear in adjacent windows, our conversions
generate one limit active intervals constraint (Section 4) instead of many limit
or cluster busy times constraints. This is likely to be significantly more efficient
when solving. Forbidding three busy weekends in a row can be done this way,
for example, but not forbidding a morning shift following a night shift.

Unwanted pattern constraints are sequence constraints, used to express the
idea that some sequences of shifts—a morning shift on the day after a night
shift, for example—are undesirable. Some of the examples given earlier can be
expressed with patterns. Our aim in the remainder of this section is to model
arbitrary unwanted pattern constraints. But first, some definitions.

Suppose there are three shifts per day: morning, day, and night, denoted
1, 2, and 3. The presentation generalizes trivially to any number of shifts.

If a nurse takes at most one shift per day, the choices on each day are one
of its shifts or nothing. Let 0 denote the absence of a shift (a free day). Using
regular expression notation, an arbitrary subset of these choices is represented
by enclosing them in brackets. For example, [02] means ‘shift 2 or nothing.’
A pattern is a sequence of these terms, representing the choices on consecutive
days. For example, [3][1] means ‘an early shift following a night shift’.

A pattern matches a nurse’s timetable at any day where the nurse has a
sequence of shifts or days off, each of which lies in the corresponding term of
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the pattern. For example, if a nurse’s timetable contains a 3 on day 1Wed and
a 1 on day 1Thu, then pattern [3][12] matches that timetable at 1Wed.

A pattern can also specify that a match is only allowed to start on certain
days. For example, the pattern Sat:[123][123] matches a nurse’s timetable
at every point where the nurse works for both days on a weekend.

The empty term [] is not forbidden, but it never matches, which makes it
useless in practice, as it turns out. On the other hand, [0123] says that we
don’t care what happens on its day, which could be useful in unusual cases.

Constraints may use patterns in several ways. Here we model unwanted
pattern constraints: constraints containing patterns, of any length and starting
at any subset of the days of the cycle, which are to be forbidden or penalized.

Arbitrary subsets of the days of the cycle are easy: just use time windows.
In each time window, an arbitrary pattern can be modelled by a cluster busy
times constraint with one time group for each term of the pattern. If the term
does not contain 0, the time group is a positive time group containing the
times of the term. If the term contains 0, the time group is a negative time
group containing the complement of the non-zero times of the term. There is
a maximum limit, equal to the number of terms minus 1.

For example, to make pattern 1Mon:[123][0][123] unwanted, add a clus-
ter busy times constraint with time groups

{1Mon1, 1Mon2, 1Mon3}
{1Tue1, 1Tue2, 1Tue3}*
{1Wed1, 1Wed2, 1Wed3}

and maximum limit 2. Here * marks negative time groups.
It seems impossible to model arbitrary unwanted patterns in unextended

XHSTT. Patterns with one or more [0] terms and two or more other terms
are the problem; we omit the details. If there is a way, it must be very artificial.

6 Converting existing instances and solutions to XESTT

We have converted instances and solutions in several formats to XESTT using
a program called NRConv. NRConv and its results are available open-source
at [12] and [13]. All conversions are carried out entirely by NRConv; there are
no hand adjustments. This section describes the key issues that arose during
each conversion. More details appear in the NRConv documentation [14].

NRConv has two layers. The lower layer defines a familiar intermediate
model of nurse rostering: shift types, days, shifts, workers, history, and so on.
The higher layer contains converters, each of which builds an instance in the
intermediate model (easily done owing to the familiarity of that model), and
then, in one function call, converts the intermediate instance into an XESTT
instance and writes it. This simplifies the addition of new converters.

XESTT offers something not found in the nurse rostering world: the archive,
a file holding any number of instances plus any number of sets of solutions
to those instances. The converted instances and solutions are grouped into
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archives. Each archive has a name, and each instance’s name is adjusted to
begin with its archive’s name. Some long instance names have been shortened.

6.1 The BCV instances

The BCV instances are the ones with names starting with BCV, available, with
documentation, from [6]. Their format is the oldest mentioned here, dating
to about 2000, but it is also the most elaborate. The format of the First
International Nurse Rostering Competition is a simplified version of it.

The BCV instances have not been converted, because the time it would take
to implement their many detailed requirements is more than the authors can
give. A careful study of their documentation suggests that the only problem is
the Partnerships feature, which requires some pairs of resources to attend the
same events (or to not attend the same events, but that variant is convertible,
using a limit resources constraint). It seems, then, that all 19 BCV instances
except the two that use this feature could be converted. Even they could be
converted if an ‘or else 0’ option was added to the limit resources constraint.

6.2 The Curtois original instances

Curtois pioneered the assembly of instances from around the world, and their
expression in a common format. Published at [6] under the heading ‘Original
instances’, there are 28 of these instances, with 66 solutions. Following [2], we
omit instance HED01b (it is very similar to instance HED01) and its solution, so
we convert 27 instances and 65 solutions, to archive COI. For every solution,
the cost reported by HSEval agrees with the cost reported by Curtois.

Four instances use the TimePeriod feature, which gives cover requirements
for periods of the day rather than for each shift. Several other instances have
complex overlapping cover requirements. Accordingly, NRConv produces a
generous number of extra event resources, and where necessary it constrains
them using the new limit resources constraint instead of assign resources and
prefer resources constraints, as described in Section 5.2.

Two instances have conditional constraints, which require one pattern to
match if another does, and all have pattern constraints, which limit the number
of occurrences of the elements of a set of patterns (a more complex constraint
than simply making the patterns unwanted, as in Section 5.3). These cannot
be converted in general, but those in the instances can be and have been [14].

In [2], the pattern constraint is said to be widely useful, which makes it a
kind of competitor for the cluster busy times constraint. A detailed comparison
is beyond our scope, but the pattern constraint’s orientation towards days can
be awkward for other time periods. Limiting the number of busy weekends, for
example, takes 2n−1 patterns, where n is the number of days in one weekend.
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6.3 The First International Nurse Rostering Competition

The instances of the First International Nurse Rostering Competition [8,9]
have been converted into two XESTT archives, INRC1-Long-And-Medium and
INRC1-Sprint. These hold the 15 long, 15 medium, and 30 sprint instances.
Also included are the 60 solutions published by the GOAL group [20,21]. The
competition’s model is widely known, and it makes a good mean between the
unrealistically simple and the tediously complex. Accordingly its conversion is
described in detail in this section, as an example.

Cover constraints appear as numbers of nurses wanted for each shift, for
each skill. These are easily handled, as in Section 5.2.

The SingleAssignmentPerDay constraint limits each nurse to at most one
shift per day. It is converted to, for each day, one limit busy times constraint
with maximum limit 1 whose time group contains the times of that day. Avoid
clashes constraints are also needed, as explained in Section 5.1.

MaxNumAssignments places a maximum limit on the number of shifts that a
nurse can work over the cycle. It is converted to one limit busy times constraint
with the given maximum limit whose times are the full set of times of the cycle.

MinNumAssignments is like MaxNumAssignments, but with a minimum limit.
MaxConsecutiveWorkingDays requires busy days to occur in blocks of at

most a given length l. It is just an unwanted pattern matching l+1 consecutive
busy days, and may be converted accordingly. However, NRConv uses the new
limit active intervals constraint (Section 4) to model the constraint directly.

MinConsecutiveWorkingDays requires busy days to occur in blocks of at
least a given length l. Again, NRConv models the constraint directly with a
limit active intervals constraint. There is a time windows implementation, but
it is especially complex and artificial here, and extending it to support history
(Section 6.4) would be very awkward. Avoiding all this complexity is a strong
argument in favour of introducing the limit active intervals constraint.

MaxConsecutiveFreeDays requires free days to occur in blocks of length at
most l. It is MaxConsecutiveWorkingDays with ‘busy’ and ‘non-busy’ swapped,
which is done by making all the time groups negative.

MinConsecutiveFreeDays requires free days to occur in blocks of length at
least l. It is MinConsecutiveWorkingDays with ‘busy’ and ‘non-busy’ swapped.

MaxConsecutiveWorkingWeekends and MinConsecutiveWorkingWeekends
place limits on the number of consecutive busy weekends (weekends when a
nurse works at least one shift). These are like MaxConsecutiveWorkingDays

and MinConsecutiveWorkingDays, except that instead of time groups holding
the times of days they use time groups holding the times of weekends.

MaxWorkingWeekendsInFourWeeks places a maximum limit on the number
of weekends worked in any four-week period. For each set of four consecutive
weekends, make a cluster busy times constraint, with time groups containing
the times of those weekends, and the given maximum limit.

AlternativeSkillCategory defines the penalty to apply when a nurse is
assigned to a shift without having the required skill. This allows each nurse
to have a different penalty, which is a problem for XESTT, since its prefer re-
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sources constraint (the obvious target when converting) associates the penalty
with the shift, giving all unqualified nurses the same penalty.

This problem is solved as follows. For each skill si and each distinct non-
zero weight wj for AlternativeSkillCategory, let S(si, wj) be the set of all
nurses n such that the assignment of n to a place requiring skill si should
attract penalty wj . Let N be the set of all nurses. For each place requiring
skill si, define one prefer resources constraint for each non-zero weight wj such
that S(si, wj) is non-empty, with weight wj and set of nurses N − S(si, wj).
In practice this produces just one or two prefer resources constraints per skill.

CompleteWeekends requires a nurse to work both weekend days or neither.
It is converted into, for each weekend W , one cluster busy times constraint
with one time group for each day of W , and minimum limit 2 or else 0.

When weekends have three or more days, it is possible to work on the first
and last days and be free in between them. The competition assigns a higher
cost for such cases than for other cases of incomplete weekends. Although
some of the competition instances do contain three-day weekends, we have
not implemented this refinement. It can be done using unwanted patterns.

IdenticalShiftTypesDuringWeekend requires a nurse to either work the
same shift on both days of the weekend, or to be free both days. Violations
of CompleteWeekends also violate this constraint. It is converted, for each
weekend w and shift s, to one limit busy times constraint whose time group
contains the times of s on the days of w, with minimum limit 2 or else 0.

The next two constraints concern night shifts (shifts that span midnight).
Night shifts are denoted 3 here, and non-night shifts are denoted 12, although
NRConv allows an arbitrary subset of the shifts to be night shifts.

NoNightShiftBeforeFreeWeekend requires a nurse to not work the night
shift directly before a free weekend. It is equivalent to the unwanted pattern
Fri:[3][0][0] and is converted accordingly.

TwoFreeDaysAfterNightShifts requires that on the two days after a night
shift, a nurse should either have the day off or else work another night shift.
Our solution makes patterns [3][12][12], [3][12][03], and [3][0][12]

unwanted. On the second-last day of the cycle, only [3][12] is unwanted.
A violation on both days should cost more than a violation on one, so

[3][12][12] should get double weight. However, the competition evaluator
does not do this, so we assign the same weight to all patterns. We can then
merge the first two, producing unwanted patterns [3][12] and [3][0][12].

UnwantedPatterns defines unwanted patterns, converted as in Section 5.3.
A day-on request asks for work on a given day, and is modelled by a limit

busy times constraint whose time group holds the day’s times, with minimum
limit 1. Shift-on requests are similar, with singleton time groups. Day-off and
shift-off requests become avoid unavailable times constraints.

HSEval’s evaluations of the 60 solutions published by the GOAL group
agree with GOAL’s. However, at first there were 7 discrepancies, which led the
GOAL group to discover that they had posted some wrong solutions. Fixing
this left 1 discrepancy, which proved to be an NRConv error, since corrected.
This highlights the importance of cross checking solutions, and the advantages
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of a web server like HSEval that can supply fully detailed evaluations, suitable
for hand checking, to anyone with a web browser, at any time.

6.4 The Second International Nurse Rostering Competition

The Second International Nurse Rostering Competition [3,4] has much that is
familiar. We will discuss only the one significant difference here.

This is that the competition reflects the way nurse rosters are often made
in reality: week by week, not all at once. A weekly instance is an instance
covering one week; a global instance covers several weeks. A global instance is
solved by solving a sequence of weekly instances for consecutive weeks. Each
weekly instance is hidden from the solver until it has solved the previous weekly
instances, and includes history: information about the previous solutions, such
as the total workload so far of each nurse.

No file format can model all this: it involves a whole process of making
instances available only after solutions to previous instances are received, with
history added based on those solutions. Global instances could be generated, or
sequences of weekly instances stored together in one archive (without history),
but solvers would have to be trusted to solve each week without looking ahead.

NRConv produces an XESTT representation of one weekly instance, based
on files in INRC1 format giving the general scenario, the week in question,
and history. History can be handled by adjusting the limits of the constraints
affected, using one constraint per resource. NRConv uses XESTT’s history
features (Section 4 and [15]) to generate a single constraint with a history
adjustment for each resource, which is clearer and less verbose.

We have chosen not to add archives of particular weekly instances to our
web site. Weekly instances after the first depend on history derived from the
solutions for previous weeks, so cannot be produced in advance. And all weekly
instances need heuristic constraints [15] which encourage solutions to help
satisfy the two global constraints, on the total number of shifts worked and
the total number of weekends worked; but opinions may differ about how to
do this. So altogether it seems best for users to generate their own instances.

6.5 The 2014 Curtois and Qu instances

In 2014, Curtois and Qu produced a new set of 24 instances [5], and these,
with solutions posted by Curtois at [6], have been converted into archive CQ14.
Again, much is familiar, and we discuss only the significant differences here.

Minimum limits on consecutive busy or free days do not apply to sequences
that include the first or last day. This is modelled using XESTT’s history
mechanism in a somewhat artificial manner.

The solutions to these instances available at [6] are not the full set reported
in [5]. Accordingly we requested and received a larger set from Curtois.

As in the Curtois original instances, more nurses may be assigned to a shift
than the specified optimum, and NRConv creates extra event resources to allow
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for this. A complication is that some of the solutions received from Curtois,
especially for the larger instances, overload shifts this way to an unreasonable
degree. The worst cases occur in Instance22.Solution.516686.roster and
Instance22.Solution.516686 1.roster, which assign 25 nurses to shift d1
on day 140, when the instance specifies an optimum cover of 1.

We have chosen to generate shifts with maximum cover 2c+ 5, where c is
the optimum cover, making solutions that overload shifts beyond that point
invalid. Of the 372 solutions received from Curtois, 42 were rejected for this
reason. The rest were classified using metadata in the solution files into four
solution groups, one for each algorithm in Table 2 of [5]. The best solution
for each instance in each group was included in archive CQ14 (67 solutions
in total). HSEval’s and Curtois’ evaluations of these solutions agree, although
HSEval’s table differs from Table 2 of [5], owing to the different solutions used.

7 Conclusion

This paper has proposed a unified model for nurse rostering instances and
solutions, using an extension of the XHSTT high school timetabling model
called XESTT. XESTT offers several advantages which, we hope, are enough
to justify its use: flexibility, consistency of design, and software support.

Four formats have been converted to XESTT, and 111 instances and 192
solutions are available at [13]. As with any new software, correctness cannot
be guaranteed, but the work has been done with care, and the agreement on
solution cost in every case suggests that remaining bugs are few.

Some of the converted instances, notably the Curtois original instances,
are not easy to interpret in their native format. XESTT may be the best hope
for ensuring that they continue to receive attention into the future.

More conversions may be undertaken in future, depending on the level of
interest. The XESTT format itself is not likely to change very much. XHSTT
has been stable now for several years. One desirable extension would optionally
allow an event resource to be assigned any number of resources, not just 0 or
1 as at present. That would also be useful for assigning students to lectures, if
the XHSTT/XESTT family is ever applied to university course timetabling.
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