895 research outputs found

    Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery

    Get PDF
    The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons

    Leukemia Inhibitory Factor Augments Neurotrophin Expression and Corticospinal Axon Growth after Adult CNS Injury

    Get PDF
    The cytokine leukemia inhibitory factor (LIF) modulates glial and neuronal function in development and after peripheral nerve injury, but little is known regarding its role in the injured adult CNS. To further understand the biological role of LIF and its potential mechanisms of action after CNS injury, effects of cellularly delivered LIF on axonal growth, glial activation, and expression of trophic factors were examined after adult mammalian spinal cord injury. Fibroblasts genetically modified to produce high amounts of LIF were grafted to the injured spinal cords of adult Fischer 344 rats. Two weeks after injury, animals with LIF-secreting cells showed a specific and significant increase in corticospinal axon growth compared with control animals. Furthermore, expression of neurotrophin-3, but not nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor, or ciliary neurotrophic factor, was increased at the lesion site in LIF-grafted but not in control subjects. No differences in astroglial and microglial/macrophage activation were observed. Thus, LIF can directly or indirectly modulate molecular and cellular responses of the adult CNS to injury. These findings also demonstrate that neurotrophic molecules can augment expression of other trophic factors in vivo after traumatic injury in the adult CNS

    Teaching leadership: an examination of best practices for leadership educators

    Get PDF
    This study explored the leadership perspectives of four school principals on creating a positive school culture and improving student outcomes. Four key themes emerged from the interviews: the importance of relationship building, focus on student learning, emphasis on professional development, and collaboration. The principals highlighted the significance of building strong relationships with staff and students as the foundation for creating a positive school culture. They emphasized the need for regular assessments to monitor student progress and creating a safe and engaging learning environment. The principals recognized the importance of ongoing professional development for themselves and their staff and believed that keeping up to date with new teaching methods and technologies was critical in providing students with the best possible education. Collaboration was also seen as essential, with the principals emphasizing the need to work collaboratively with staff, parents, and the wider community to achieve shared goals. Overall, the study suggests that effective school leadership requires a focus on building strong relationships, a commitment to student learning, ongoing professional development, and collaboration. These findings are consistent with previous research on effective school leadership, emphasizing the need for a collaborative and supportive school culture that prioritizes student learning and teacher development. The study has important implications for school leaders, highlighting the importance of relationship building, ongoing professional development, and collaboration in creating a positive school culture and improving student outcomes

    Dynamic assessment of shear connection conditions in slab-girder bridges by Kullback-Leibler distance

    Get PDF
    Author name used in this publication: Y. Xia2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor

    Get PDF
    Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans

    Theory of nuclear spin conversion in ethylene

    Get PDF
    First theoretical analysis of the nuclear spin conversion in ethylene molecules (13^CCH4) has been performed. The conversion rate was found equal approx. 3x10^{-4} 1/s*Torr, which is in qualitative agreement with the recently obtained experimental value. It was shown that the ortho-para mixing in 13^CCH4 is dominated by the spin-rotation coupling. Mixing of only two pairs of ortho-para levels were found to contribute significantly to the spin conversion.Comment: 20 pages, 5 eps figure

    Radiative Corrections to Double Dalitz Decays: Effects on Invariant Mass Distributions and Angular Correlations

    Get PDF
    We review the theory of meson decays to two lepton pairs, including the cases of identical as well as non-identical leptons, as well as CP-conserving and CP-violating couplings. A complete lowest-order calculation of QED radiative corrections to these decays is discussed, and comparisons of predicted rates and kinematic distributions between tree-level and one-loop-corrected calculations are presented for both pi-zero and K-zero decays.Comment: 25 pages, 18 figures, added figures and commentar

    The Breast Cancer Susceptibility Gene BRCA1 Is Required for Subnuclear Assembly of Rad51 and Survival following Treatment with the DNA Cross-linking Agent Cisplatin

    Get PDF
    Mutations in breast cancer tumor susceptibility genes, BRCA1 and BRCA2, predispose women to early onset breast cancer and other malignancies. The Brca genes are involved in multiple cellular processes in response to DNA damage including checkpoint activation, gene transcription, and DNA repair. Biochemical interaction with the recombinational repair protein Rad51 (Scully, R., Chen, J., Ochs, R. L., Keegan, K., Hoekstra, M., Feunteun, J., and Livingston, D. M. (1997) Cell 90, 425-435), as well as genetic evidence (Moynahan, M. E., Chiu, J. W., Koller, B. H., and Jasin, M. (1999) Mol. Cell 4, 511-518 and Snouwaert, J. N., Gowen, L. C., Latour, A. M., Mohn, A. R., Xiao, A., DiBiase, L., and Koller, B. H. (1999) Oncogene 18, 7900-7907), demonstrates that Brca1 is involved in recombinational repair of DNA double strand breaks. Using isogenic Brca1(+/+) and brca1(-/-) mouse embryonic stem (ES) cell lines, we investigated the role of Brca1 in the cellular response to two different categories of DNA damage: x-ray induced damage and cross-linking damage caused by the chemotherapeutic agent, cisplatinum. Immunoflourescence studies with normal and brca1(-/-) mutant mouse ES cell lines indicate that Brca1 promotes assembly of subnuclear Rad51 foci following both types of DNA damage. These foci are likely to be oligomeric complexes of Rad51 engaged in repair of DNA lesions or in processes that allow cells to tolerate such lesions during DNA replication. Clonogenic assays show that brca1(-/-) mutants are 5-fold more sensitive to cisplatinum compared with wild-type cells. Our studies suggest that Brca1 contributes to damage repair and/or tolerance by promoting assembly of Rad51. This function appears to be shared with Brca2

    Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo

    Get PDF
    Background Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. Methods OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. Results Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. Conclusions This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo
    corecore